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AbstrAct

This paper deals with two topics: roll predictions of marine vessels with machine-learning methods and parameter 
estimation of unknown ocean disturbances when the amplitude, frequency, offset, and phase are difficult to estimate. 
This paper aims to prevent the risky roll motions of marine vessels exposed to harsh circumstances. First of all, this 
study demonstrates complex dynamic phenomena by utilising a bifurcation diagram, Lyapunov exponents, and 
a Poincare section. Without any observers, an adaptive identification applies these four parameters to the globally 
exponential convergence using linear second-order filters and parameter estimation errors. Then, a backstepping 
controller is employed to make an exponential convergence of the state variables to zero. Finally, this work presents 
the prediction of roll motion using reservoir computing (RC). As a result, the RC process shows good performance for 
chaotic time series prediction in future states. Thus, the poor predictability of Lyapunov exponents may be overcome 
to a certain extent, with the help of machine learning. Numerical simulations validate the dynamic behaviour and 
the efficacy of the proposed scheme. 

Keywords: Non-periodic roll motions, dynamic analysis, reservoir-computing, parameter estimation, periodic disturbances, backstepping

INTRODUCTION

Marine vessels frequently encounter roll behaviour. Non-
periodic patterns appear at the end of stable responses, despite 
regular waves. This phenomenon is hard to predict and control 
by the officers on the bridge. Chaos is an aperiodic, long-
term motion that exhibits sensitive dependence on initial 
conditions in a deterministic system. Even slight changes 

in initial conditions (IC) result in various outcomes. The 
sensitivity of a chaotic dynamic system has merit because it 
shows a different periodic orbit by using a light adjustment of 
parameters without the whole reconstruction of the system [1]. 
However, controlling the non-periodic behaviour of a chaotic 
system is not a trivial issue in the marine environment.

First of all, this paper attempts to predict non-periodic 
roll motions through machine learning (ML) techniques, 
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before their manipulation. Simple and complex systems were 
recently studied under a veil of chaos, using ML, to contribute 
to predicting dynamic behaviour [2]. Notably, echo state 
networks (ESN), which are termed ‘reservoir computing’ (RC), 
are efficient and easy to apply to the black box modelling of 
dynamic systems [3]. The RC is a recurrent neural network 
(RNN)-based framework that enables the readout to extract 
the desired output by using linear mapping [4, 5]. The 
sensitivity of a chaotic system challenges prediction, which 
only works if the initial uncertainty is not quickly multiplied 
by the evolution law [6]. However, this skill is preferable 
for chaotic time series forecasts because it remembers past 
values and handles external disturbances, where all of the 
past elements are implicitly contained in a state vector [4]. 

As mentioned, the non-periodic roll motions are revealed 
at the end of stable responses, despite regular excitations [7]. 
However, estimating the frequencies of unknown external 
disturbances is difficult because the waves acting on a ship can 
not be known in advance [8]. Under manoeuvring conditions, 
it is difficult to measure the exact amounts of time-varying 
disturbances for a ship, such as waves, winds, currents, 
ice-covered waters, green waters, etc. Also, estimating the 
sinusoidal signal is a significant problem for the control 
system. It is essential to identify the parameters of unknown 
periodical excitations in tracking and rejection control [9]. 
In order to realise the safe voyage of marine vessels under 
severe sea situations, this paper investigates the parameter 
estimation of unknown periodic disturbances and the 
suppression of non-periodic roll motions.

It is known that a periodic excitation consists of the 
sum of its frequency, amplitude, bias (offset), and phase 
(randomness). As for the real-time processing of chaotic 
motion in nonlinear systems, a potential solution, based on 
Fourier analysis, is deemed to be an unwelcome method, 
owing to the maximisation of the periodogram [10]. A similar 
work [10] identified the full parameters by using a fifth-order 
estimator, showing the complexity and computational costs. 
The frequency and other parameter estimation techniques are 
separated in the present paper. Other parameter estimations 
of amplitude, bias, and phase are treated using the simple 
update law without any observers [9, 11]. In order to design the 
disturbance rejection control, precise frequency estimation 
is guaranteed with finite-time convergence [8]. To achieve 
the stability and robustness of a nonlinear system, this 
paper implements linear second-order filters and parameter 
estimation errors, to converge the global parameter estimation 
without a higher-order estimator. Such a filtering operation 
overcomes the infinitely increasing auxiliary vector [12]. 
Then, a backstepping control is designed to suppress the non-
periodic roll motions of the marine vessels under unknown 
periodic disturbances. 

The remainder of the paper is organised as follows. A ship 
rolling model and control synthesis for non-periodic roll 
stabilisation, using backstepping and roll prediction with 
RC, are explained in Section 2. The parametric estimation of 
amplitude, frequency, offset, phase, and adaptive mechanisms 
is expressed. Numerical simulations verify the proposed 

schemes in Section 3. The dynamic theory is used to explore 
the uncontrolled roll responses using the bifurcation diagram, 
Poincare map, and Lyapunov exponents (LEs). Final remarks 
and recommended future research directions are given in 
Section 4.

MATHEMATICAL FORMULATION

SHIP ROLLING MODEL

The rolling motion of a ship, in transverse directions, can 
be modelled as follows [7]:

[ ]44 44 44 ( ) ( )seaI A B GZ F tφ φ φ+ + + ∆ =  (1)

where φ (rad), φ (rad/s), and φ (rad/s2) are the roll 
angle, rate, and acceleration; 44I , and 44A 2(kg m )⋅ are 
the moment of inertia and the added mass coefficients; and 

44B 2(kg m / )s⋅  is the damping coefficient. It should be 
noted that both the added mass and hydrodynamic damping 
coefficients are a function of the wave frequency; ∆  is the 
ship’s displacement; GZ  is the righting lever; and seaF  is 
the wave-exciting moment. As for periodic roll excitation, 
the external wave seaF  is given as:

( ) ( ) cos( )sea rollF t HF tω ω= (2)

where rollF  ( N m⋅ ) is the rolling moment; and ω  and H
are the angular frequency and the wave amplitude. Generally, 
Eq. (1) can be rewritten with a quadratic damping, as follows:

[ ]44 44 44 44 1

3
3

( ) ( ) ( ) ( ) ( )

( ) ( ) cos( )
q

roll

I A t B t B t t C t

C t HF t

φ φ φ φ φ

φ ω ω

+ + + − ∆

+ ∆ =

   

(3)

where 44qB  is the quadratic damping coefficient. Eq. (3) can 
be scaled into a non-dimensional equation, thus:

22
4444 44 44

1 1 1

33

1 1

( ) ( ) ( ) ( ) ( )

( )( ) ( ) cos( )

n qn n

roll

BI A Bx x x x
C C C

C HFx x
C C

ωω ωτ τ τ τ

ωτ τ τ

+
+ +

∆ ∆ ∆

− + = Ω
∆

   

(4)

with ( ) ( )x tτ φ= , ntτ ω= , and / nω ωΩ = ; where Ω  is 
the ratio of excitation (ω ) to a natural angular frequency  
(/ nω ωΩ = ). Then, the simplified form is derived as: 

3
1 2( ) ( ) ( ) ( ) ( ) ( ) cos( )x b x b x x x kx Fτ τ τ τ τ τ τ+ + − + = Ω    (5)
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with

4444 1
1

44 44 1 44 44

,
( )

n
n

n

BB Cb
I A C I A

ω ω
ω

∆
= = =

+ ∆ +

44 3
2 2

44 44 1 44 44 1

, ,
( )

q roll roll

n

B C HF HFb k F
I A C I A Cω

= = = =
+ + ∆

where 1b and 2b are the linear and nonlinear damping and 
k is the restoring part of a duffing type roll motion. 

CONTROL SYNTHESIS OF BACKSTEPPING

The idea of backstepping is to recursively design a controller 
by considering some of the state variables as being ‘virtual 
controls’ and creating intermediate control laws for them [13]. 
This method is one of the proper nonlinear controllers for 
regulating the desired ship motions. By adding the actuation  
( u ) in Eq. (5), the complete control system represents 
a forced rolling system with an active control input: 

3
1 2 cos( )x b x b x x x kx F uτ+ + − + = Ω +    (6)

where the periodic excitation cos( )F τΩ  is given as a time-
varying disturbance. In fact, an active controller is vital, to 
achieve a satisfactory anti-rolling effect. By selecting the state 
variables as 1x x= and 2x x= , the governing Eq. (6) 
can be rewritten into the state-space representation, as follows:

( ) 1,x Ax f x Bu B dτ= + + + (7)

In Eq. (7), d  represents the time-varying disturbance 
input ( cos( )F τΩ ), while the state vector ( )x , system 
matrices ( 1A, B, B ), and nonlinear term ( )f  are 
described by: 

( )

1

2 1

1 3
2 2 2 1

0 1
, ,

1

00
, ,

1

x
x A

x b

B B f x
b x x kx

τ

   
= =   −   

  
= = =    − −   

 (8)

In the dynamic model, there are two types of  inputs: 
the control ( )u , which can be manipulated by the control 
actuator, and the disturbance ( )d , which represents external 
influences on ship motion.  The two state variables are 
rewritten in the state-space representation form,

1 2
3

2 1 1 2 2 2 2 1

x x
x x b x b x x kx d u
=

 = − − − + +





(9)

From Eq. (9), 2x is considered to be a virtual control 
input for 1x . To make 1x  exponentially converge to zero, 
the desired value for 2x  is chosen at 2 1 1dx xγ= − , 
where 1γ is a positive constant. Consequently, 2 2dx x→  
would yield the solution 1

1 1 1(0) t
dx x x e γ−→ = . We declare 

2 2 2 2 1 1dz x x x xγ= − = +  as the tracking error of state 2x  
and define a positive definite (P.D.) The Lyapunov function 
is as follows:

2 2
1 1 2

1 1
2 2

V x z= +  (10)

Then the derivative of 1V  is given as:

2
1 1 1 2 2 1 1

3
2 1 1 2 1 2 2 2 2 1(2 )

V x x z z x
z x x b x b x x kx d u

γ

γ

= + = −

+ + − − − + +



 

 (11)

As 2z  should be asymptotically stable, 1V  is expected 
to be a negative definite (N.D.) function. If the disturbance 
is well-defined, the control input can be given as follows:

3
1 1 2 1 2 2 2 2 1 2 2( ) 2u t x x b x b x x kx d zγ γ= − − + + + − −  (12)

where 2γ  is a positive constant, resulting in a P.D. function 
2 2

1 1 1 2 2V x zγ γ= − − . However, since the amplitude and 
frequency of disturbance are hardly recognised, the control 
input cannot be defined as Eq. (12). In fact, the control input 
is dependent on the estimated value d̂  instead of d , so the 
controller in Eq. (12) should be rewritten as: 

3
1 1 2 1 2 2 2 2 1 2 2

ˆ( ) 2u t x x b x b x x kx d zγ γ= − − + + + − −  (13)

which would yield

2 2
1 1 1 2 2 2

ˆ( )V x z z d dγ γ= − − + −  (14)

The problem is to make an estimation d̂  that eliminates 
the term 2

ˆ( )z d d− . In general, four critical features should 
be determined, to define a sinusoidal signal completely, in 
terms of offset, amplitude, frequency, and phase. Assuming 
that ˆ ˆ̂̂( ) cos( ) sin( )od F a bτ τ τ= + Ω + Ω , where ˆ ˆ̂̂( ) cos( ) sin( )od F a bτ τ τ= + Ω + Ω is the 
estimated offset, Ω̂  is the estimated frequency, 

2 2
F̂ a b= + 

is the estimated amplitude, and ˆ arctan ( / )b aψ =   is the 
estimated phase. The following subsections will present an 
adaptive mechanism to update those components.



POLISH MARITIME RESEARCH, No 1/2024 7

ESTIMATION FOR FREqUENCY

Let us introduce a second-order filter for the disturbance, 
as shown in Eq. (15),

0
2

1 2

( ) ( )s d s
s s

λ
ξ

λ λ
=

+ +  (15)

where 0 1, ,λ λ and 2λ  are positive constants that make 
2

1 2( )s s sλ λΛ = + +  a Hurwitz polynomial. Neglecting 
the initial conditions, it is simple to obtain the relation as 
follows:

2( ) ( ) ( ) ( )t t t tξξ ξ ξ ε= −Ω = Θ +    (16)

where ( )tξ  and ( )tξ  are derivatives of the output 
variable of the filter (15). Triple differentiation of ( )tξ  
gives 2 2( ) ( ) ( )t t tξ ξξ ε ε−Ω +Ω +

  , in which ( )tξε = 
= 2 ( ) ( )t tξ ξε εΩ +   is the exponential damped function 
with exponential damped derivatives defined by non-zero 
initial conditions [14]; 2Θ = −Ω  is a constant parameter. 
The updated law for the identification of Θ , including the 
frequency Ω  [8], is as follows:

2 2
3 3

ˆ̂

ˆ

ˆ
χ γ ξξ

χ γ ξ γ ξ

Ω = Θ
Θ = +
 = − Θ −




 

 (17)

where Ω̂  is an estimated frequency Ω and Θ̂ is an 
estimated unknown parameter Θ . The estimated error 

ˆΩ = Ω−Ω  is guaranteed to converge to zero and is 
bounded by a decaying exponent ( )tΩ ( )t≤ Θ 0

0
te βρ −≤ , 

where 0ρ  and 0β  are positive numbers [14]. The derivative of 
the estimated error ˆΘ = Θ−Θ  can be proved with a positive 
constant 3γ  as follows:

2
3 3

2 2 2
3 3 3 3

2 2
3 3 3

2
3 3

ˆ( ) ( )
( ) ( ) ( ) ( )

ˆ( ( ) ( ) ( )) ( ) ( ) ( )
ˆ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

t t
t t t t

t t t t t t

t t t t t

t t t t
ξ

ξ

χ γ ξ γ ξ ξ

γ ξ γ ξ γ ξ γ ξ ξ

γ ξ γ ξ γ ξ ε

γ ξ γ ξ ε

Θ = Θ −Θ

= − − −

= − − Θ − − −

= Θ − Θ −

= − Θ −




 

  



    

  

 

 (18)

The P.D. Lyapunov function is 2 1
1
2

TV = Θ Γ Θ  , where 
1Γ  is a symmetric P.D. matrix. Using the result in Eq. (18), 

the following can be obtained:

2
2 1 1 3 3 1

2 2
3 2 3 1

( )
1 0
2

T TV

V

ξ

ξ

γ ξ γ ξ ε

γ ξ γ ε

= Θ Γ Θ = Θ Γ − Θ − Γ Θ

= − + Γ ≤

      



 (19)

It is clear from Eq. (19) that 2V  is a  non-increasing 
function and, hence, 2V  is bounded. According to Barbalat’s 
Lemma, 2 0V →  as t →∞ , which also leads to 0Ω→ . 
Consequently, the updated law in Eq. (17) is proven to estimate 
the frequency Ω̂ →Ω  of the sinusoidal signal.

ESTIMATION FOR OFFSET, AMPLITUDE, AND PHASE

To estimate the rest of the parameters, the disturbance is 
calculated as follows:

( ) ( )Td t tθ ϕ=  (20)

where [ ]ToF a bθ =  is a vector of unknown constants 
and [ ]( ) 1 cos( ) sin( ) Tt t tϕ = Ω Ω  is the regression vector [9]. 
Replacing into Eq. (14) gives

2 2 2 2
1 1 1 2 2 2 1 1 2 2 2

ˆ( )T T TV x z z x z zγ γ θ ϕ θ ϕ γ γ θ ϕ= − − + − = − − +   (21)

where ˆθ θ θ= −  is the estimated error. With a P.D Lyapunov 
function 

1
3 1 2

1
2

TV V θ θ−= + Γ , where 2Γ  is a symmetric P.D 
matrix, the derivative 3V  is given as:



1 2 2 1
3 1 2 1 1 2 2 2 2

2 2 1
1 1 2 2 2 2

ˆ

ˆ( )

T T T

T

V V x z z

x z z

θ θ γ γ θ ϕ θ θ

γ γ θ ϕ θ

− −

−

= + Γ = − − + − Γ

= − − + −Γ




   





 (22)

To make 3V  an N.D. function, the update law should be 
chosen as follows:

2 2
ˆ zθ ϕ= Γ

 (23)

Finally, with the chosen update law, 2 2
3 1 1 2 2V x zγ γ= − −  

is an non-increasing function and 3V  and 1V  are bounded, 
hence 1 0x →  and θ̂ θ→  as t →∞ . To sum up, the 
necessary parameters for estimating sinusoidal disturbance 
and controller have been explained. In the next section, 
simulation results illustrate the system’s dynamic behaviour 
under backstepping control with an adaptive mechanism, 
as well as the estimation process, to formulate the external 
disturbance.
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NON-PERIODIC ROLL PREDICTION USING RC

In contrast to conventional RNN, only the readout weight 
is trained. The input weight ( inW ), feedback weight (

fbW ), 
and adjacency matrix ( resW ) are fixed and chosen randomly. 
In some simple applications, where feedback response is not 
required, 

fbW  can be omitted. Based on similar effects on 
reservoirs, inW  and 

fbW  are primarily constructed in the 
same way. Both input and feedback responses can be used 
to generate output [15]. For a reservoir with N  neurons, 
the structure of a general ESN, having N  reservoir states, 
is illustrated in Fig. 1. The linear mapping input-output at 
a perceptron is presented in Fig. 1.

Fig. 1. Generic sketch of the RC framework

According to [15], the complete form of the updated 
equation for the reservoir state vector ( )r n  is defined as 
follows:

( ) tanh ( ) ( 1)
( )

in
in res fb out

in

b
r n W W r n W y n

u n
  

= + + −  
  

  (24)

( ) (1 ) ( 1) ( )r n r n r nα α= − − +   (25)

where ( ) I
inu n ∈ℜ  is the input fed to the reservoir at time 

step n  ( 1,...,n T= ); T  is a data point in the training 
dataset; inb  is the bias of the reservoir’s input; ( ) Nr n ∈ℜ
is a vector of a reservoir neuron; ( )r n  is its updated value; and 

( ) O
outy n ∈ℜ  is a vector of network outputs [13]. Weight 

matrices inW , resW , and fbW  are defined as the input weight 
matrix, the adjacency matrix describing the connection of the 
nodes in the reservoir, and the feedback weight matrix from 
the output back to the reservoir, respectively. α  is the leaking 
rate ( 0 1α≤ ≤ ). Without the leaking term, ( ) ( )r n r n≡  

for the case where 1α = , ( ) tanh( )f x x=  is the activation 
function. The weighted sum of the input states is then fed 
through an activation function to give the final output. The 
most basic activation function is the step function. However, 
smooth (sigmoid) functions are mostly preferred, such as 
the hyperbolic tangent function tanh( )x . Eqs. (24) and (25) 
indicate that the reservoir state ( )r n  will be updated based on 
the current input ( )inu n  and the feedback from the previous 
sample ( 1)outy n − . The feedback term can be omitted in 
some tasks, where the feedback state is unnecessary. The 
output state ( )outy n  of the reservoir at the sampling point 
can be calculated from the linear combination between the 
reservoir state and input state, as below [15]: 

,

( ) ( )
( )

out

out out in

b
y n W u n

r n

 
 =  
  

 (26)

where outW  is the weight matrix 
from the reservoir to the output 
and outb  is the bias of the reservoir’s 
output. In the training procedure, 
the input data is the reference 
data (teacher data) and the actual 
output of the reservoir is replaced 
by the desired output [15]. Within 
a training duration of T samples, 
all input and output data are 

collected into matrices ( )N TY × and ( )N TX × , by concatenating 
T columns. Regarding Eq. (26), the linear relation between 
Y  and X  can be written in matrix form, as follows:

outY W X=  (27)

At the end of the training phase, the trained weight matrix 
outW  can be analytically computed using ridge regression.

1( )T T
outW YX XX Iν −= +  (28)

where ν  is the regularisation constant added to avoid 
overfitting and I  is the identity matrix. After the training 
phase, the output weight outW  is computed and can be used 
for continuous computation. The actual output of the iteration 
can be reapplied as input for the next iteration. The teacher 
data is now unnecessary because the reservoir computer can 
generate prediction data. As presented in Eq. (26), the actual 
output of the reservoir can be obtained.
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SIMULATION RESULTS

DYNAMIC ANALYSIS OF NON-PERIODIC ROLL 
MOTIONS

In this section, finding the chaos using dynamic theory, 
stabilisation, and the parametric identification of unknown 
periodic disturbances are discussed in sequence. Numerical 
simulations are performed to reveal the effectiveness of the 
proposed mechanism. The main parameters of the chosen 
model, from a marine vessel, [7] show strong nonlinear 
characteristics such as chaos, limit cycles, and resonance 
under periodic disturbances [16]. For the numerical 
simulation, the initial condition (IC) of the roll dynamics is 
= [0.5 (rad) 0.2 (rad/s)].

First, we analysed the non-periodic roll motions before 
parametric estimation and stabilisation. The bifurcation 
diagram easily recognises this phenomenon, representing 
the qualitatively sudden change as a varied parameter. When 
a small perturbation causes the qualitative responses in the 
system, it is regarded as unstable, whereas the opposite case 
is stable. This roll model shows rich dynamic behaviours, 
depending on the initial conditions. For example, a strange 
attractor exhibits sensitivity to initial conditions.

Fig. 2. Bifurcation diagram using the second iterative method

The ramp-up and ramp-down parts of the graph are 
necessary for observing the bistable region [17]. Fig. 2 shows 
the stable and unstable rolling motions, based on the second 
iterative method, where 2 2

1 2( )r x x= +  is the distance from 
the origin in the Poincare map [18]. The ramp-up ( upr , in 
blue) and ramp-down ( downr , in red) parts enable checking 
of the bistable region. F  is the forcing amplitude of wave 
excitations, with respect to roll mode after dividing inertia 
terms. A ship’s motion is stable, with periodic responses, 
until F  reaches a value of 0.2. However, the branches in 
the diagram start to split (bifurcate) into two new branches 
from the point F = 0.2, and the ship becomes unstable. Such 
unstable regions are more dominant, as the forcing amplitude 
reaches 1. Period-doubling routes to chaos and period-
undoubling routes to single branches are clearly observed 
when the F  increases. With a slight rise in forcing amplitude, 
the periodic windows, which are stable regions, can be seen 
among the chaotic clouds of dots. 

Fig. 3(a) illustrates the Lyapunov exponents (LEs) of the 
uncontrolled systems, demonstrating a chaos system. It is 
a measure of predictability and sensitivity for controlling 
parameter changes. The exponential growth in iLE  can be 
estimated as follows:

2 2
( ) (0) iLE t

i it e∆ ≈ ∆  , 1 i n≤ ≤              (29)

where 
2

(0)i∆  denotes the initial separation, with a chaotic 
motion of 0iLE >  making behaviour unpredictable, whereas 

0iLE ≤  for regular motion. The stretching and contracting of 
attractors can be defined with LEs, whose positive values signify 
chaos [19]. The LE measures the mean rate of exponential 
divergence of nearby trajectories, which gives information 
on the growth rate of IC. The positive LEs ( 1LE , blue line) 
show that the system is sensitive to IC and their trajectories 
diverge with time, while negative LEs ( 2LE , red line) indicate 
a tendency for convergence. A positive LE usually indicates 
that the system is chaotic. The larger the exponent, the more 
unstable the system. The negative LEs mean that the system 
is stable. The negative LEs are characteristic of dissipative 
systems, such that the roll system exhibits asymptotic stability; 
the more negative the exponent, the greater the stability [17]. 

a) b)

Fig. 3. Dynamic analysis of the uncontrolled system in the case of IC [0.5 (rad) 0.2(rad/s)]: (a) Lyapunov exponents; (b) Poincare section
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Fig. 3(b) shows where the Poincare section shows 
a deterministic system’s uncontrolled roll, with no random 
or noisy inputs; it appears to be non-periodic. The main 
parameters are adopted in a marine model [7]. The Poincare 
map reduces the n-dimensional flow to a  1n −  dimensional 
map. All trajectories of an n-dimensional system start on 
the 1n −  dimensional surface of a section flowing through 
it. Such reduced dimensionality makes it possible to preserve 
periodic and quasi-periodic orbits. To make an autonomous 
flow in a torus, a third value tθ = Ω  can be considered from 
Eq. (6) without control. A trajectory flowing around a torus 
with a period ( 2 /T π= Ω ) leads to the Poincare mapping 
of a  0θ θ=  plane. Picking up a cross-section of roll angle 
and rate, the Poincare map is mainly varied according to 
the strength of the forcing function. The manifolds become 
tangential and intersect transversely when F  increases. If 
a trajectory in the phase plane intersects itself repeatedly, 
then a strange attractor and fractals may be observed in the 
roll dynamics [20-22]. 

PARAMETRIC IDENTIFICATION OF PERIODIC 
DISTURBANCES

Next, the simulations for the proposed backstepping control 
are conducted. The filter and controller design parameters 
are set as 0 1 2 1 2 3( , , , , , )λ λ λ γ γ γ = (0.15, 2, 8, 5, 5, 2.5). The 
updated rate matrix is chosen as 2 (2,1.2,1.2)diagΓ =  and 
the IC is ˆ̂( (0), (0), (0), (0))oF a b Ω = (0.2, 0.3, 0.1, 0). Figs. 4 
and 5 demonstrate the estimation process for the frequency, 
offset, amplitude, and phase, respectively. In contrast, Fig. 5 (a) 
verifies a combination of the above results to form a complete 
estimation for the sinusoidal disturbance. All parameters of 
periodic disturbances can be precisely estimated. Suppression 
of the roll angle and rate is achieved using the backstepping 
control, as seen in Figs. 5(b) and 5(c). Finally, filtered signals 
are illustrated in Fig. 5(d), according to the updated law in 
Eq. (17).

(a) (b)

(c) (d)

Fig. 4. Test results of estimation (1): (a) frequency; (b) offset; (c) amplitude; (d) phase
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(a) (b)

(c) (d)

Fig. 5. Test results of estimation (2): (a) periodic disturbances; (b) control inputs; (c) suppression of two states; (d) filtered signals

SHIP ROLL PREDICTION USING RC

Finally, the non-periodic rolling motions are predicted via 
RC. Such an ESN algorithm is used to forecast the reference 
data of roll angle and roll rate for the training and prediction 
processes of the reservoir. After the initial input weight ( inW
) and feedback weight (

fbW ) are fixed, the predicted process 
is performed from the computation of the trained reservoir. 
In fact, the prediction performance strongly depends on 
the parameter values, as listed in Table 1. A reservoir size (
N ), related to the memory capacity, is selected as N = 600, 
where σ  is a hyper-parameter for adjusting the performance. 
The input range [ , ]σ σ−  indicates the dispersion level 
of components in the weight matrices ( inW , 

fbW ). The 
adjustment of the leaking rate (α ) indicates the level of 
dependence of the network on past information. The lower the 
α  value, the more dependent it is on past information. The 
spectral radius ( ρ ) is related to the magnitude of the largest 
eigenvalue of internal weight ( resW ) and performance. As α  
increases, the wider it spreads on the weight matrices. The 
author decided that α  should not be too low because it will 
inflict an amplitude value on input and feedback responses.

Tab. 1. Main parameter values for the prediction model
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The prediction performance of quantitative and qualitative 
measures, such as error criteria and non-periodic orbits in 
future states, is presented. At first, the mean squared error 
(MSE) is employed to evaluate the prediction performance, 
which measures the average of the squares of the errors. It 
shows a positive value that decreases, as the error approaches 
zero, and is defined as follows:

MSE = 
2

1

1 ˆ( )
n

T T
n

Y Y
n =

−∑                        (30)
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where TY  and T̂Y  describe the actual and predicted values 
of roll responses in the time period, respectively. 

The numerical tests were conducted based on several 
scenarios: Case 1 ( TT = 160, TP = 40), Case 2 ( TT = 200, PT
= 400), Case 3 ( TT = 200, TP = 800), and Case 4 ( TT = 400, 

TP = 800), where TT  and TP  mean the times of training and 
prediction, as listed in Table 2. The indices show that the 
results of Case 1, Case 2, and Case 4 are better than Case 
3. When PT  increases, the values of MSE increase as well, 
and prediction performance is degraded over time. Then, 
a proper PT  should be adjusted accordingly. The ratio value of 

/ 0.5T TT P =  is necessary for this simulation. Interestingly, 
the results of RC slightly vary at every simulation. The test 
results of each case are changeable, according to the reservoir 
size or the other parameters in Table 1. 

Tab. 2. Prediction accuracies using performance index (MSE)
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TT TP TT TP TT TP TT
TP

160 s 40 s 200 s 400 s 200 s 800 s 400 s 800 s

1( )x φ 0.3336 0.8659 1.0768 0.8912

2 ( )x φ 0.2342 0.6809 0.8946 0.6383

(a) (b)

Fig. 6. Prediction results (Case 1): (a) roll angle; (b) roll rate

(a) (b)

Fig. 7. Prediction results (Case 2): (a) roll angle; (b) roll rate
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(a) (b)

Fig. 8. Prediction results (Case 3): (a) roll angle; (b) roll rate

(a) (b)

Fig. 9. Prediction results (Case 4): (a) roll angle; (b) roll rate

The main purpose of the RC is to predict chaotic time 
series behaviours. Figs. 6 to 9 depict the qualitative features of 
prediction results based on the training time TT  of 160-400 
seconds. Then, the model performance is demonstrated by 
increasing the prediction time TP  by 40-800 seconds. Figs. 6 
, 7, and 9 show that the non-periodic pattern is clear for cases 
where T TT P>  and T TT P< . However, chaotic time series 
prediction is obscure, due to the insufficient TT , as seen in 
Fig. 8. Chaotic features become evident in Fig. 9, by increasing 

TT . Thus, prediction performance can be secured in the case 
of / 0.5T TT P ≥ , by adjusting the corresponding TT  and TP
. As a result, the RC process shows good performance, even 
for chaotic time series prediction in future states, although 
it lacks predictability [6]. 

CONCLUSIONS

One can easily imagine that the marine environment is not 
easy for humans and marine vessels to deal with. This paper 
has investigated two topics: how to estimate the parameters 
of unknown ocean disturbances and how to control a ship’s 
dynamic behaviour in future states. The rolling behaviour 
of marine vessels shows non-periodic responses, as well 
as regular responses. Sometimes, the complicated rolling 
motions are demonstrated by strong nonlinearities or 
forcing amplitudes of extreme wave excitation. Specifically, 
the complex behaviours of a rolling system are investigated 
by nonlinear analyses, such as bifurcation diagrams, the 
Lyapunov exponent (LE), and Poincaré maps. The chaos is 
not a casual phenomenon but, rather, it yields particular 
responses. It is an aperiodic, long-term motion that 
exhibits sensitive dependence on the initial conditions in 
a deterministic system. The nonlinear rolling motion shows 
a strange attractor, depending on the initial conditions. The 
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second iterative method of the bifurcation diagram displays 
the unstable qualitative responses in the ship’s roll due to 
slight changes in the parameters, such as the initial conditions 
or forcing amplitudes. Based on the magnitude of the wave 
excitations, rich dynamic responses can be observed, such as 
periodic (stable, regular) routes to chaos (reverse doubling), 
and chaos at the end. In fact, a ship under excessive rolling 
motions may result in a capsized state with no other recovery 
oscillations until it is in an upright position. Since there is no 
response amplitude operator (RAO), including wave height, 
in this paper, it is a limitation that marine vessels do not 
recognise the precise timing of chaos or capsize in sea states. 
It is difficult for ships’ crews to deal with the abrupt changes 
in the rolling motions.

Therefore, this paper has investigated rolling motion 
predictions for marine vessels with machine-learning methods 
and parameter estimation of unknown disturbances. All 
parameters, such as frequency, offset, amplitude, and phase, 
are precisely estimated based on the adaptive mechanism 
without any observers. The linear second-order filters and 
parameter estimation errors are employed to achieve global 
exponential convergence. Also, the backstepping method 
is realised, to regulate the roll angle and rate, in the case 
of severe disturbances to marine vessels. Moreover, the RC 
process revealed its predictive performance in terms of the 
future states’ chaotic time series behaviours. This may help to 
support the lack of predictability by LEs [6]. Unfortunately, 
prediction performance is highly dependent on the parameter 
values selected by the designer’s empirical trials. Interestingly, 
the results of RC vary slightly in every simulation. According 
to the reservoir size, practitioners might find the optimum 
values of parameters. However, the method presented may 
help them obtain a  satisfactory conclusion. Insufficient 
training time causes the obscure prediction of chaotic orbits. 
Thus, prediction criteria and the prediction and training time 
ratio are necessary. This paper suggests a ratio value of greater 
than 0.5 but it has a limitation of slow convergence in transient 
performance; however, it shows less oscillation due to the 
second-order filtered signals [9]. Finding the proper values to 
adjust to fast convergence speed and transient performance 
is necessary. To make a safe and robust system of marine 
vessels under severe sea environments, an adversarial attack 
might be considered, based on adaptive control with machine 
learning skills or quantum RC in future research. 
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AbstrAct

Uniform symmetric bodies can be observed floating asymmetrically under certain circumstances. Previous explanations 
of this are mostly abstract and lack experimental verification, making their understanding and application difficult. 
This article presents in detail alternative insights into the floating equilibria of uniform prisms and parabolic cylinders. 
The intrinsic characteristics of the equilibrium curves are investigated, and several equilibria different from those 
in the literature are found. The inflection points in the equilibrium curves are analyzed quantitatively due to their 
significance for floating states. Furthermore, experiments have been conducted for the square prism which validate the 
derived equilibrium curve, and provide a practical impression of the asymmetric floating phenomenon of symmetric 
bodies. These results have the potential to be applied in naval and ocean engineering, such as in the design of vessels 
and floating offshore structures.

Keywords: hydrostatic stability, floating equilibrium, asymmetric floating state, experimental validation

INTRODUCTION

The stability of floating bodies is a classic and fundamental 
subject in fluid mechanics. The study of the hydrostatic 
responses of floating bodies is much earlier than the study of 
the hydrodynamic response due to the interaction between waves 
and the floating body[1]. Indeed, it can be traced back to the 
well-known work of Archimedes[2]. Since then, the interest of 
researchers and engineers in this subject have never ceased[3]
[4][5][6]. In naval and ocean engineering, the concept of a meta-
centre (denoted by M)[7][8][9][10] has been introduced to 
evaluate the initial stability of a floating body. It is defined as 
the intersection of two vertical axes passing through the center 
of buoyancy at two slightly different angles of heel. What is 
more, a well-known formulation has been derived, formulating 

the distance between the buoyancy centre and the meta-centre 
with the ratio of the moment of inertia of the plane of flotation 
and the volume of the displaced fluid (BM = I/

∆

). A general 
criterion for the stability of a ship is commonly applied with 
the use of the meta-center, i.e., the ship remains stable provided 
the weight and the buoyancy create an upright moment after 
a limited inclination. Capsizing could happen if the sign of the 
moment is the opposite. Generally, the meta-centre is assumed 
consistent at a limited inclination angle (< 8°)[11], in the scope 
of initial stability. Since the ship’s hull is usually symmetric, the 
arm of the upright moment is dependent on the relative position 
of the meta-centre with respect to the centre of gravity (denoted 
by G)[12]. The floating state can be regarded as stable, neutral, or 
unstable when M is located above, on, or below G, respectively. In 
the preliminary phase of ship design, the stability curve is usually 

https://orcid.org/0000-0002-2849-6330
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used to characterize the capability of the hull’s maintaining an 
upright floating state when subjected to limited inclinations. 
Therefore, the evaluation of the floating equilibrium would be 
significant for the design of floating structures, especially those 
involving large variations of weight. To simplify the problem, 
the present article will start with fundamental homogenous 
floating bodies.

Physically speaking, could a uniform and symmetric body 
float asymmetrically in still water? As the general criterion 
of hydrostatic stability of a  floating body is commonly 
identified under a specified floating state, researchers have 
attempted to figure out the ‘equilibrium’ of a random floating 
state of some fundamental geometries such as a floating ball, 
circular cylinder, rectangular box, and so on. For example, 
Auerbach[13]demonstrated that a non-circular cylinder could 
float indifferently with respect to the cylinder’s centra axis. 
Likewise, Ulam[14]raised a question: whether a uniform 
body that is able to float stably at any orientation must be 
a sphere. Assuming the body’s density ρ approaches zero, 
the problem is equivalent to whether a body’s being able to 
hold on in any inclination on a horizontal plane is necessarily 
a sphere. As a partial answer, Montejano[15]proved that if 
a body with the above-mentioned character was connected, 
closed, and bounded, then its shell should be a sphere. This 
implies that the sphere is one possible geometry with the 
desired property. Consequently, Gilbert[1] analysed the stable 
floating equilibrium for several geometries such as an ellipsoid, 
cylinder and cube, employing the law of minimum energy 
which is further extended into more complex geometries by 
Mégel[2]. More recently, a comprehensive review of the floating 
equilibria of regular solids has contributed to integrating the 
main results and predicting the potential for applications in 
engineering[5]. According to the above-mentioned research, 
a symmetric body is proven theoretically to be able to float 
asymmetrically. However, the proofs of equilibria are quite 
abstract, and an extensive investigation of the equilibrium 
curve is still needed. Also, the characteristics of an equilibrium 
are yet to be verified by physical experiment. 

In naval and ocean engineering, the ship and offshore 
structures are commonly designed to float in an upright state[3]
[4][6]. Meanwhile, the consideration of the entire floating states 
is practical and crucial under certain circumstances such as 
improper loading and damage. In the present article, the entire 
equilibrium curve of stability is, for the uniform square prism 
and rectangular prism, derived in a more straightforward 
manner (these are similar to common geometries of a ship 
hull and of offshore structures like breakwaters and floating 
piers). Further, the characteristics of the equilibrium curves of 
a parabolic cylinder with arbitrary profile are extended. With 
respect to the previous results provided by Gilbert[1], several 
different characteristics of the equilibrium curve are observed 
and explained in terms of physics. Furthermore, the floating 
state of a uniform square prism has been investigated by 
experiments which validate the theoretical results and provide 
an experimental impression of the interesting phenomenon 
that a symmetric floating geometry could float asymmetrically 
in certain conditions. The present work could be regarded as 

a preliminary for an extensive study of the floating stability of 
various more complex floating structures, and demonstrates 
the asymmetric floating state could be induced by improper 
loading and design of a floating body with a  symmetric 
sectional profile.

MATHEMATIC MODELLING  
OF FLOATING EQUILIBRIUM

As shown in Fig. 1, the floating state of a uniform square 
prism can be represented by its transversal section under 
the assumption of its being a uniform body. According to 
Archimedes’ principle, the ratio of the draught T to the depth 
D equals the ratio of the body’s density ρ to the density ρw of 
the water, which is denoted by λ (λ = T/D = ρ/ρw). To identify 
the waterline, a vector n0 is defined normal to the original 
waterline (blueline) and oriented into the air. Then, the vector 
can be formulated as n(-sinθ, cosθ) where θ denotes the angle of 
inclination relative to the upright state. Setting the origin O(0,0) 
fixed on the centroid of the immersed edge, the coordinate of 
the centre of gravity G(0, D/2) and buoyancy B0(0, T/2) can 
be formulated at the upright state. Also, any arbitrary centre 
of buoyancy B(By, Bz) can be formulated as a function of λ and 
θ. It should be noted that the meta-centre M will move along 
with B until an equilibrium is reached.

The floating states can be classified into two categories 
according to the geometry of the submerged volume, namely the 
quadrilateral prism (state 1) or triangular prism (state 2 which 
includes the critical state). A critical state can be recognized 
between the states 1 and 2, corresponding to a triangular prism 
of replacement volume. The floating angle of the critical state 
can be formulated as θc = tan-1(2λ). To reach a stable floating 
equilibrium, both the force balance and stability condition 
should be satisfied, namely BG//n and the vertical coordinate 
Mz > Gz. Thus, the possible floating equilibria can be sought 
through the variation of λ and θ. Since the floating state is 
symmetric, the observed range can be reduced to λ  (0, 1/2] 
and θ  [0, π/4].

Fig. 1. Illustration of a floating square prism: the green area indicates  
the equivalent displaced volume of water due to the tilted angle θ;  

the dashed lines refer to different cases of floating states  
(in anti-clockwise order: state 1  critical state θc  state 2  π/4).
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At state 1, i.e., θ  [0, θc), the following formulation can be 
obtained according to Archimedes’ principle and the law of the 
translation of the centre of gravity:

(B – B0)V = ΔbΔv     (1)

where B0 and B refer to the two-dimensional coordinates of the 
buoyancy centre in the upright and inclined states, respectively. 
As shown in Fig. 1, b indicates the centre of equivalently 
translated volume Δv with respect to the total submerged 
volume V. Substituting the force balance condition BG//n into 
Eq. (1), one obtains

θ = cos–1( 1
12λ(1–λ)–1 )     (2)

which is valid in the domain λ  [3–√−3
6 , 1/2]. Assuming the 

condition θ < θc (θc = tan-1(2λ)), the domain can be further 
reduced to λ  [3–√−3

6 , 1/4]. Accordingly, the stable equilibrium 
θ = 0 can be obtained in the domain λ  (0, (3–√−3)/6).

At state 2, the immersed section becomes a triangle in the 
domain θ   [θc, π/4]. It should be noted that the point Oʹ is 
not the rotating axis of the flotation plane in this case. Thus, 
the method of equivalent volume displacement is not available 
in this case. Employing to the condition BG//n, one obtains

θ = 1
2sin–1( 16λ

9–16λ)      (3)

which is valid in the domain λ  [0,  9/32]. Assuming  
θ ≥ θc = tan-1(2λ), the domain can be reduced to λ  [1/4, 9/32]. 
Analogously, the equilibrium θ = π/4 can be derived in the 
domain λ  [9/32, 1/2].

In conclusion, the following formula is derived as a function 
of the angle of inclination θ and the draught ratio λ:

θ = 

0,        λ  (0, 3–√−3
6  ]

cos–1( 1
12λ(1–λ)–1 ), λ  (3–√−3

6 , 1
4  ]

1
2sin–1( 16λ

9–16λ),    λ  ( 1
4 , 9

32 ]

π/4,        λ  ( 9
32, 1

2  ]

  (4)

As shown in Fig. 2, the stable equilibrium angle θ versus 
λ is plotted. Notably, there are three inf lection points (A, B 
and C) on the equilibrium curve in the domain λ  [0, 1/2]. 
Observing the curve, one can see the discontinuity at points 
A and C, which implies severe change of f loating state across 
these points. Comparing this curve with the curve obtained 
by Gilbert[1], the present curve coincides with it before the 
inf lection point B, but behaves differently approaching 
to the peak angle, yielding two extra inf lections points 
(B and C).

Fig. 2. The comparison of the present equilibrium  
curve with that of Gilbert [1].

Further, to analyse the implication of the inflection point A, 
equation (2) can be expressed as

θ = cos–1(x)       (5)

where x =  12λ(1–λ)–1. Taking the derivative of λ, equation 
(5) can be rewritten as

dθ
dλ  = 

1–x2
6x2(1–2λ)         (6)

According to equation (5), one can see that x approaches 
1 and θ approaches zero when λ approaches (3± √−3)/6. From 
equation (6), one can see the derivative will approach infinity 
when x approaches 1, which means it is a singularity and the 
slope approaches π/2 at point A.

Similarly, for the inflection point C, equation (3) can be 
rewritten as

θ = 1
2sin–1(x)        (7)

where x = 16λ/(9–16λ). Taking the derivative of λ, equation 
(7) yields

dθ
dλ  = 1–x2(9–16λ)2

72       (8)

so, analogously, one can find that the derivative will approach 
infinity as θ approaches π/4, which implies there is also 
a singularity whose slope approaches π/2 at point C. As a result, 
θ varies severely when λ approaches these singularities.

Meanwhile, the inflection point B is associated to a transitional 
floating state between states 1 and 2, corresponding to the 
critical stable equilibrium θ = θc. Combining equation (6) and 
equation (8), the identical real derivative (dθ/dλ = 4.8) can be 
obtained approaching from both the increasing and decreasing 
direction. This implies the floating state varies continuously 
across the inflection point.

PRISM wITH ARBITRARY  
RECTANGULAR SECTION

The equilibrium curve of a prism with arbitrary rectangulare 
section can be explored extensively. As shown in Fig. 3, the 
section of the prism has breadth D and width W (we assume 
W > D). Therefore, the prism will tend to float on the larger 
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angle which could yield an inflection point. Note that there are 
two non-zero inflection points for each curve in the domain  
λ  [0, 0.5]. Specifically, one inflection point approaches to 
around 25° and the other one approaches 45° with an increase 
of D/W. As shown in Fig. 4(b), the distribution of inflection 
points can be regressed into a linear function (θ = 73.1 λ +8.2), 
except for the singular inflection point of D/W = 1.

Fig. 4. The distribution of equilibrium curves and corresponding inflection  
points: (a) equilibrium curves for different sectional aspect ratios;  

(b) the distribution of inflection points and regressed function.

PARABOLIC CYLINDER

To illustrate the potential applications in naval and ocean 
engineering, the study of equilibrium is further extended 
to floating parabolic cylinders. As shown in Fig.  5, the 
parabolic profile curve can be assumed as the cross-section 
of a ship. To present the approach in a simplified manner, the 
cylinder is assumed uniform and then the centre of gravity  
G(0, T(3D2–5L2)/5DL2) can be derived, where T, D and L refer 
to the draught, breadth and the width of the flotation plane in 
the upright state, respectively.

Fig. 5. Schematic section of a floating parabolic cylinder.

To generalize the derivation, the parabolic profile is written 
in a non-dimensional formula:

Z = KY2–N       (10)

where Z = z/D and Y = y/D. The parameters K and N can be 
formulated as follows:

K = 4TD
L2

     (11)
N = TD

Further, the area of the immersed section can be derived 
as A = 2TL/3D2. As illustrated in Fig. 5, assuming the cylinder 

face to be at the minimum of potential energy [1]. Likewise, the 
relation between θ and the upright draught T can be derived 
as listed in Table 1, where the floating equilibrium is found 
dependent on the aspect ratio (D/W) and upright draught T. 
The critical draughts T1, T2 and T3 are formulated as follows:

T1 = 9D2–6W23D–
6 ;

T2 = 9D2–8W23D–
8 ;

T3 = 9D2–8W23D+
8       (9)

Fig. 3. Illustration of a floating prism with arbitrary rectangular section:  
the dashed lines refer to varied floating states (in anti-clockwise order,  

state 1→critical state θc→state 2→π/4)

Tab. 1. The floating equilibria for prism with arbitrary rectangular section

Analogously, the floating equilibria can be derived in terms of 
the sectional aspect ratio, assuming the symmetry of the floating 
state. Furthermore, the equilibrium curves of a prism with varied 
aspect ratios (D/W) can be derived where the inflection points 
(the non-zero inflection points) can be observed distributed 
along lines as shown in Fig. 4. According to Fig. 4(a), a non-zero 
floating angle exists when the aspect ratio D/W is approximately 
larger than 0.82, which implies that asymmetrical floating states 
tend to occur at relatively large values of D/W. Otherwise, 
the prism would float symmetrically at any draught. That’s 
why in most circumstances, only symmetric floating states are 
observed. Interestingly, the equilibrium curve is smooth when 
the sectional aspect ratio is less than around 0.96. Under this 
circumstance, the angle of inclination is less than the critical 



POLISH MARITIME RESEARCH, No 1/202420

floats stably at an angle of inclination θ, the buoyancy centre 
translates from B to Bʹ and the floatation line P0S0 becomes PʹSʹ. 
For each specified floating cylinder, the maximum inclination 
angle θc is defined as the topside of the cylinder’s contact with the 
water, yielding the corresponding flotation line PcSc. According 
to the conservation of the displaced volume and equation (10), 
the abscissas of the endpoints (Pʹ and Sʹ) at inclination angle θ 
can be formulated as follows:

Ypʹ = – L
2D  + L2

8TD  tanθ     (12)

Ysʹ = L
2D  + L2

8TD  tanθ      (13)

In addition, θc can be obtained when Y = ½: 

θc = tan–1(4T(D+ L)
L2 )     (14)

Therefore, the coordinate of the buoyancy centre can be 
obtained by calculating the double integral over the immersed 
section[13], taking into consideration the conservation of the 
area A of the immersed section. The coordinate of the buoyancy 
centre B can be formulated as follows:

YBʹ =YF + D2

A [ 1
12L3

θ sinθ cos2θ+∫ Ysʹ

Ypʹ
(YF –Y)ZdY] (15)

ZBʹ =ZF + D2

A [1
2 Lθ( 1

12L2
θ sin2θ –Z2

F)cosθ+

+∫ Ysʹ

Ypʹ
(ZFZ–1

2 Z2)dY]     (16)

where Lθ = (Ysʹ – Ypʹ)is to the length of the flotation line at an 
inclination angle of θ. Point F refers to the flotation centre, 
which is located at the centre of the line PʹSʹ Therefore, the 
coordinates of F are

YF = L2

8TD  tanθ       (17)

ZF = L2

16TD  tan2θ      (18)

Substituting equations (10), (12), (13), (17) and (18) into 
equations (15) and (16), the coordinate of Bʹ can be derived 
as follows:

YBʹ = L2

8TD  tanθ      (19)

ZBʹ = – 5D
2T  + L2

16TD  tan2θ    (20)

Note that the abscissas of Bʹ and F are identical[2]. According 
to Bouguer’s theorem[16], the distance between Bʹ and the 
metacentre M can be expressed as follows:

dM
Bʹ = I

V       (21)

where I and V refer to the moment of inertia of the plane 
of flotation and the immersed volume, respectively. Taking 
into consideration the homogeneity of the cylinder in the 
longitudinal direction, equation (19) can be simplified to

dM
Bʹ = RA       (22)

where R denotes the moment of inertia of the flotation line with 
respect to F, which can be calculated as follows:

R = ∫
1
2 Lθ
1
2 Lθ–  s2ds = 1

12L3
θ     (23)

where Lθ is the flotation line at an inclination angle of θ, which 
can be written as (Ysʹ – Ypʹ)/cosθ. Substituting equations (19), 
(20) and (23) into equation (22), the coordinates of M can be 
derived:

YM = L2

8TD  tan3θ       (24)

ZM = – 5D
2T  + L2

16TD  (cos2θ
3  –1)   (25)

To investigate the characteristics of the equilibrium curve 
practically, we confine the parameter K  [2, 3]. Similarly, we use 
the relative density λ as the variant; it can be obtained as follows:

λ = ρ
ρω

 = D(D2–L2)
L3

      (26)

According to equation (26), we can obtain the relation between 
the normalized draught and flotation line T/D = KL2/4D2. The 
equilibrium can be calculated by the conditions of force balance 
and stability as described before. Furthermore, the equilibrium 
curve can be derived along with L/D  (0, 1]. Fig. 6(a) shows 
the profiles of a series of parabolic cylinders in the range  
K  [2, 3]. The corresponding stable equilibrium curves are 
given in Fig. 6(b), where one can recognize the continuity of the 
equilibrium curves, located between approximately 60 degrees 
to 70 degrees. Also, the angle of inclination is increasing with 
an increase in the topological parameter K. Exploring a broader 
range of K, the equilibrium curve is found to be discontinuous 
(inflection points exist) for K around 1 (as shown in Fig. 7). 
Fig. 8 shows more profiles and their corresponding equilibrium 
curves around K = 1, through which the inflection point is found 
to be in the range K  [0.9, 1.7]. Taking the parabolic cylinder 
as a vessel, we can conclude that the draught span for stable 
upright flotation is wider when the block coefficient becomes 
larger. As shown in Fig. 8(c), the distribution of the inflection 
points can be further formulated as

θ = –1.71 ln(λ) + 55.684    (27)

where λ  (0, 1]. The above formulation can be applied to 
estimate the angle of inclination for a specified draught when 
a discontinuity exists in the equilibrium curve. Those inflection 
points should be noted during the operation of the ship to avoid 
a severe variation of the floating state.

Fig. 6. Profiles of a series of parabolic cylinders (a) and their corresponding 
equilibrium curves (b) for K [2, 3].
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Fig. 7. The distribution of equilibrium curves (a) and corresponding 
profiles (b) for K [1, 10].

Fig. 8. A series of equilibrium curves (a) for K [[0.8, 1.7], where the distribution 
of the inflection points (labeled by rectangles in (a)) is regressed (b).

EXPERIMENTAL VERIFICATION

To verify these theoretical results, an experiment was 
conducted in the flume of the laboratory LOC (Laboratório 
de Ondas e Correntes) of the Federal University of Rio de 
Janeiro. As shown in Fig. 9, a hollow square prism with 5×5 
grid was designed to simulate a uniform prism whose weight 
can be adjusted by filling the grids symmetrically with ballast. 
In these tests, uniform iron bars with different diameters were 
applied as ballast: their lengths are identical to that of the prism. 
Waterproof foam lids were used on both ends. The minimum 
relative density of the prism (i.e., a hollow prism) was 0.06 and 
the maximum about 0.87, as listed in Table 2. For each round 
of testing, the prism was released from an upright state and 
the inclination angle measured after the reaching of a stable 
floating state. As shown in Fig. 10, various floating states can 
be observed, including several asymmetrical ones.

Fig 9. The hollow model with 5×5 grid structure (left) and the practical 
prism model with lids prepared for testing (right).

Tab. 2. The test matrix and stable floating angle.

Case Relative
density

Stable
angle(°) Case Relative

density
Stable

angle(°)

1 0.06 0 10 0.46 45

2 0.20 13 11 0.51 45

3 0.23 24 12 0.56 45

4 0.26 28 13 0.61 45

5 0.29 31 14 0.67 44

6 0.32 44 15 0.72 42

7 0.36 44 16 0.76 27

8 0.39 45 17 0.81 14

9 0.42 45 18 0.87 1

Fig. 10. The typical floating states corresponding to the cases in Table 2.

As shown in Fig. 11, the experimental results have been 
compared with the analytical results and the results of [1]. 
Overall, the present analytical results agree better with the 
experimental results than do those of [1]. It can be noted that 
the scatter of the experimental results deviates slightly from the 
analytical results near the inflection points. This is because the 
floating state becomes quite sensitive to the relative density near 
those inflection points. The experimental uncertainty should 
also be responsible for the deviation, due to the machining and 
assembly error of the square prism. Further, the symmetry of the 
floating equilibrium curve is also verified by the experimental 
results, with respect to the centerline at ρ/ρw = 0.5. It is worth 
noting that the inflection points revealed in the present work 
make the equilibrium curve possess a significant ‘plateau’ and 
narrow transition range from θ = 0° to 45°. According to the 
present floating equilibrium curve, one should note that the 
magnitude of draught of floating body could affect the stable 
floating state significantly, which, for many floating structures, 
must be strictly supervised to avoid operational risks. For 
example, the relative density of a fully loaded cubic barge is 
usually larger than 0.8, thus its normal stable floating angle is 
zero. However, improper loading could make the relative density 
collapse to 0.2~0.8. Therefore, an initial inclination of the vessel 
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may occur which could lead to capsizing. In conclusion, the 
equilibrium curve should be considered by the designer and 
operator of floating structures whose relative density or weight 
could be varied frequently, in addition to the use the equilibrium 
curves to adjust the floating state actively.

Fig. 11. Comparison of analytical and experimental results

CONCLUSIONS

In the present article, the phenomenon that symmetric 
geometries can float asymmetrically has been studied analytically 
and experimentally. The intact floating equilibrium curve for 
a prism and a parabolic cylinder have been derived in detail, 
finding several characteristics which are revealed as different 
from those found in the literature. The characteristics of the 
inflection points in the equilibrium curve have been analysed, 
providing an improved interpretation of them in physical terms. 
Generalizing these results, the analysis of floating equilibria 
has been extended to prisms with arbitrary rectangular 
section. Some interesting features are revealed concerning 
the distribution of the equilibrium curves corresponding to 
a series of sectional aspect ratios. To illustrate the case of a vessel, 
the floating equilibrium of a parabolic cylinder was further 
investigated. The characteristics of its equilibrium curves have 
been obtained analytically, which could be meaningful to the 
design of floating structures in naval and ocean engineering. 

Moreover, to verify the floating equilibrium curve, 
experiments were conducted with a uniform square prism with 
adjustable relative density. According to the experimental results, 
good agreement is reached relative to the presented analytical 
results. In terms of the applications of equilibrium curves, the 
behaviour of the floating equilibrium should be understood and 
could be taken advantage of to avoid a damaging event of floating 
structures and enhance the efficiency of operation, especially for 
those floating vessels with a frequent variation of loading. The 
present study illustrates an approach to comprehend the floating 
equilibrium through several fundamental geometries, which 
can be extended to the investigation of the floating equilibrium 
of more complex geometries in future work. Besides, the two-
dimensional floating state should also be considered in the 
future, namely considering both transversal and longitudinal 
inclination simultaneously, which will be more practical for 
applications.
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AbstrAct

In this study, the effect of a 10MW DTU wind turbine (WT) on a semi-submersible platform is examined from the 
point of view of its dynamic behaviour as part of a mooring system with attached buoys. The platform has a rectangular 
geometry, and consists of four offset and one main cylindrical members. The structure is assumed to receive both wave 
and wind loading simultaneously. A coupled analysis within the frequency domain is performed using two boundary 
element method software packages, NEMOH and HAMS. The results are presented in the form of parametric graphs for 
each of the software packages used and for varying wave directions. The graphs show the hydrodynamic loads exerted on 
the platform, the wave elevation, the added masses, the hydrodynamic damping coefficients, the mooring line tensions, 
and the Response Amplitude Operators (RAOs) for the motion of the platform.

Keywords: Hydrodynamic loads; Semi-submersible platform; Wind turbine; Mooring system; Catenary line; Buoys; RAO

INTRODUCTION

Solar, wind and wave energy are unquestionably some of 
the cleanest forms of energy. Both on land and at sea, they can 
offer essential resources for the production of electrical power 
that is sufficient to cover the needs of thousands of homes. It is 
also clear that the development of alternative forms of energy 
contributes to the reduction of greenhouse emissions. 

In particular, the design of offshore structures for the 
exploitation of these natural resources, and consequently for 
the production of renewable energy, is a continuously growing 
field of research, since most of these technologies are still in 
their infancy. Despite their limited efficiency compared to 
onshore renewable systems, several types of structures have 
been designed with the intention of utilising the vast available 
potential lying offshore. Floating photovoltaics (FPV) systems 
have been developed relatively recently in Portugal, Brazil, Japan, 

and other countries worldwide, and research on installation 
locations, cooling mechanisms, efficiency improvements and 
mooring systems is available in the literature [1-5]. 

The general principle of operation of a wave energy converter 
(WEC) is based on the action of waves to produce electricity. 
There are many types and configurations that have been discussed 
in the literature [6-9]. Studies of mooring systems for WECs can 
be found in references [10-13]. More sophisticated hybrid designs 
have been developed that combine oscillating water column 
(OWC) devices with floating wind turbines (WTs) [14, 15]. 

Offshore WTs are used to exploit the potential offered by the 
wind out at sea. Depending on the water depth in the region of 
installation, they are either fixed to the bottom of the sea or are 
allowed to float. The most common types of fixed systems are 
monopiles and jacket structures [16-19]. However, when the 
water depth is greater than 50 m, floating structures are needed. 
Floating WTs may be cost-effective at depths where fixed WTs 
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are impossible to install, or where the cost is excessively high 
due to large water depths. One type of structure is a spar-buoy, 
typically in the form of a cylindrical floater that supports the 
WT [20-22]. Another type is a semi-submersible platform, 
which consists of one main, central and some offset cylinders, 
the exact number of which depends on the geometry of the 
floater [23, 24]. Fully coupled hydro-aero-elastic analyses of 
this structure were conducted in [25, 26].

A floating structure is moved from its initial equilibrium 
position by the forces exerted on it through the combined action 
of waves and wind. A design that includes a suitable mooring 
system is therefore urgently needed. A typical fixed structure 
used in deep water is a Tension Leg Platform (TLP) [27-30]. In 
this case, the floating structure is permanently moored using 
tendons, which restrict the platform to very small heave motions 
due to the large pretension along the z-axis. 

Taut-leg mooring lines are also used; in this case, the mooring 
cables form an angle with the seabed, and the anchoring point 
needs to withstand both horizontal and vertical forces. Another 
type of mooring system is based on the use of catenary lines which 
lie horizontally at the seabed, and may also include clump weights 
or buoys [31, 32]. A finite difference analysis of a catenary riser 
was presented in [33]. The buoys may either be positioned at the 
surface or fully submerged to provide some additional buoyancy, 
in which case the weight on the mooring lines is decreased and 
their dynamic behaviour and performance are enhanced. The 
impact of using submerged buoys on the dynamic tension of the 
mooring line was numerically and experimentally investigated in 
[34]. The use of buoys can decrease the tension, provided that their 
position, size, and number are carefully considered. In order to 
assess the impact of submerged buoys on the dynamic behaviour 
of the mooring line, the previous study was extended by using 
numerical methods in the time and frequency domains [35]. The 
effects of two hybrid taut mooring lines on the motion of a semi-
submersible platform and the tension in these lines have also 
been studied [36]. These systems combine the use of weights and 
buoys along the mooring line. In [37], the authors discussed the 
effects of buoys on the dynamics of a semi-submersible platform, 
and explored how the system’s operational capacity could be 
increased by adding more buoys to the system in deep and very 
deep waters. Finally, several configurations of catenary and taut 
mooring systems for a semi-submersible 5MW WT in shallow 
waters, involving different materials, mooring components and 
anchors, were examined in [38]. The material of the mooring 
lines has also been found to be a key parameter affecting the 
strength of the system [39, 40].

In this study, we perform a coupled analysis of a catenary 
line with buoys. The solution to this problem is split into two 
main parts: firstly, we need to identify how the WT affects the 
dynamics of the coupled problem, and secondly, we need to solve 
for the motion of the total floating structure. The effect of the 
WT is defined by means of inertial, gyroscopic, and gravitational 
effects, as well as aerodynamic loading. We therefore need to 
calculate the added mass, damping and stiffness matrices of 
the WT. To this end, a Hamiltonian dynamic analysis based 
on blade element momentum theory is employed. This issue 
is not elaborated in detail within this particular study, and the 

reader is referred to the literature instead. The hydrodynamic 
part of the problem was solved using the open-source codes 
NEMOH [41] and HAMS [42].

GEOMETRY OF THE SEMI-SUBMERSIBLE 
PLATFORM AND THE CLUMP BUOYS 

MOORING SYSTEM
The semi-submersible platform considered here 

accommodates a 10 MW DTU WT [43]. The water depth at the 
installation site is 200 m, and the draft of the floating platform 
is 20 m. A three-dimensional schematic representation of the 
platform and the mooring system is provided in Figure 1. The 
floater is rectangular, and is composed of one main, central 
column and four offset column-cylindrical tubes at each corner 
of the floater. Thinner, horizontal, and inclined tubular members 
connect these members to provide the required buoyancy, along 
with cross braces. Top and side views of the floater are shown 
in Figures 2 and 3. To reach the top of the main column of the 
floating platform, the tower of the WT is cantilevered at a height 
of 10 m above the still water level (SWL). For the purposes of 
this study, the main parts of the WT that are considered in 
the analysis are the rotor-nacelle assembly, the tower, and the 
three blades.

Fig. 1. Rectangular semi-submersible platform supporting the 10MW WT, 
shown in 3D with the mooring system and buoys

In the static equilibrium position in still water, the platform 
has a mass of 7,728,000 kg, including all the weights involved 
and any additional ballast that may be required. The platform’s 
centre of mass (CM), including the ballast, is located along 
its centreline and 9.91 m below the SWL. The roll and pitch 
inertias are 7,730,000,000  kgm2, while the yaw inertia is 
6,700,000,000 kgm2.

Fig. 2. Top view of the rectangular semi-submersible platform
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Fig. 3. Right side view of the rectangular semi-submersible platform

Four catenary lines make up the mooring system, each of 
which has a buoy attached to it. All of  mooring lines (and 
their segments) are made from the same material (R4-RQ4, 
studless chain, steel).  The selected geometrical configuration 
for the mooring system ensures a zero total sum of the forces 
in the horizontal and transversal directions. Table 1 lists the 
mechanical, geometrical and physical characteristics of the 
mooring system. The points at which the mooring lines are 
attached to the platform are 14 m below the free surface, and 
their respective coordinates are given in Table 2.

Tab. 1. Physical, geometrical and mechanical properties  
of the mooring system with buoys

Number of mooring lines (two elements each,  
separated by an attached buoy) 4

Angle between two consecutive lines 90°

Water depth 200 m

Depth to fairleads below SWL 14 m

Radius of the mooring system measured from  
the cenre of the platform 635 m

Radius of the mooring lines attachment points 
measured from the centre of the platform 40.868 m

Total length of the mooring lines 835.5 m

Length of the first segment 484.5 m

Length of the second segment 351.0 m

Diameter of first segment 0.087 m

Diameter of first segment 0.040 m

Mass of the lines per unit length in the air  
(first segment) 151kg/m

Mass of the lines per unit length in the air  
(second segment) 30.00kg/m

Weight of the lines per unit length in the water  
(first segment) 1400 N/m

Weight of the lines per unit length in the water  
(second segment) 240 N/m

Buoy’s Net Buoyancy (NB) 176000 N

Pretension at the top of each mooring line (Tp) 600000 N

Stiffness of mooring lines Kxx = Kyy 140000 N/m

Tab. 2. Coordinates of the mooring lines 

Mooring 
line (#)

Upper attachment point
(x, y, z)

Lower attachment point
(x, y, z)

1 (−28.56, −28.56, −14) (−449, −449, −200)

2 (−28.56, 28.56, −14) (−449, 449, −200)

3 (28.56, 28.56, −14) (449, 449, −200)

4 (28.56, −28.56, −14) (449, −449, −200)

By identifying the forces acting on an element of the mooring 
line (in the 2D xz-plane), we can obtain the following two generic 
equations for the normal and tangential directions [44; p.258]

dT–ρдAdz = [wsinφ–F(1+ T
EA )]ds   (1)

Tdφ–ρдAzdφ = [wcosφ+D(1+ T
EA )]ds  (2)

where D and F are the mean hydrodynamic forces per unit length 
in the normal and tangential directions, respectively, w is the 
weight per unit length of the line in the water, A is the cross-
sectional area of the mooring line, E is the elastic modulus, 
T is the line tension, φ is the angle between the line and the 
horizontal, and s is an independent parameter along the mooring 
line. Figure 4 shows a 3D view of the suspended mooring line 
system, while Figure 5 shows the configuration of one mooring 
catenary line under various external forces.

Fig. 4. 3D view of the suspended mooring line system

Fig. 5. One-line configuration under different external forces

DISCRETIZATION OF THE FLOATING 
STRUCTURE AND A FULLY COUPLED 

ANALYSIS

SOLUTION TO THE HYDRODYNAMIC PROBLEM

As discussed in the introduction, the solution to the coupled 
problem is found by solving the hydroelastic problem and 
quantifying the contribution of the WT, by calculating the 
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masses, damping coefficients, and stiffness coefficients actually 
superinduce the external loads. Nevertheless, given that the 
purpose of our study is to focus on the dynamic behaviour of 
a floating structure subjected to external wind and wave loads, 
an aerodynamic analysis of the WT is not carried out. The reader 
is referred to [29] for more details on this issue.

The total mass of the WT is 1,200,000 kg and mass of the 
tower is 563,000 kg. The mass of the hub is 106,000 kg, and 
that of the nacelle is 406,000 kg (Figure 1).The total mass of 
the three blades is 126,000 kg [43].

COUPLED EQUATIONS OF MOTION

After obtaining the solution to the hydrodynamic boundary 
value problem and defining the multifaceted effects of the WT, 
we now calculate the responses of the platform. Following 
Newton’s second law, the coupled dynamic equations of motions 
can be described as follows [29]:

Σ6
j=1 {–ω2[(Mij+Aij)+AWT

ij +ω
i (Bij+BWT

ij  )]+
Cij, hydro+Cij, mooring+CWT

ij  }xj0=Fi , i=1,…, 6 (3)
where 
Mij : mass of the platform
Aij : added mass 
Bij : hydrodynamic damping 
Cij, hydro : hydrostatic stiffness
Cij, mooring : stiffness coefficients of the mooring lines
Fi : first-order wave loads, matrices of the floating platform 

The equations of motion are solved in the frequency domain. 
The matrices of the WT are denoted as follows:
Aij

WT : added mass
Bij

WT: damping
Cij

WT: stiffness.

In this approach, the contribution of the WT is modelled as 
an external loading due to inertial, gyroscopic, gravitational, 
and aerodynamic effects, by introducing the last three of these 
matrices (subscript WT) into the dynamic equation of motion 
of the floating platform. 

The hydrodynamic pressures are integrated over the entire 
wetted surface of the floater to derive the exciting forces on the 
right-hand side of Equation (3). These hydrodynamic pressures 
are caused by (i) the potential arising from the incident wave, 
and (ii) the diffraction/radiation potential. They are calculated 
in a straightforward way with the aid of Bernoulli’s equation. 

NUMERICAL RESULTS: COMPARISON  
AND DISCUSSION

In this section, we present the most important numerical results. 
We compare the exciting forces to those originating from the added 
masses and damping coefficients for the floating structure, both 
with and without braces. The figures cited here represent the RAOs 
of the motions of the floating platform. Particular attention is also 
paid to the free surface elevation around the floating structure, 

added mass, damping and stiffness matrices of the WT (which 
are superimposed onto those of the floating structure). 

The hydrodynamic problem is addressed in the context of the 
boundary element method (BEM). We treat the problem in 3D, 
assuming an incompressible, inviscid and irrotational flow so that 
the linear potential theory can be utilised, and the coordinate 
system is defined in Figures 2 and 3. For the hydrodynamic 
calculations of this study, we use BEM solvers called NEMOH 
and HAMS. NEMOH is an open-source BEM solver developed 
by the Ecole Centrale de Nantes [41], which solves the linear 
boundary value problem by using a generalised mode approach 
and source distribution for the Green function. In the literature, 
comparisons of results obtained using NEMOH with those 
from the well-known BEM solver WAMIT have demonstrated 
satisfactory accuracy. In addition to NEMOH, we also used the 
open-source BEM solver HAMS, again using the potential flow 
theory, with a code written in the FORTRAN 90 language [42]. 
The solver uses boundary integral equations to represent the 
scattered wave potentials. In both cases, the solvers give several 
outputs, but the ones considered in this study are the first-order 
hydrodynamic coefficients, i.e., the added mass, the radiation 
damping and excitation forces. We also note that the motions of 
the floater are calculated only with HAMS, as NEMOH v.2 does 
not allow for calculation of the RAOs of the structure.

In order to solve the problem numerically, the wetted surface 
of the structure is subdivided into plane facets with a triangular 
or quadrilateral shape. The panel subdivision of the configuration 
used here is depicted in Figures 6 and 7. A total of 1500 elements 
were used to discretise the wetted surface of the body in 
NEMOH (without the braces), and 7,696 elements were used 
for discretisation with HAMS (with the braces).

Fig. 6. Panel discretization – NEMOH

Fig. 7. Panel discretization – HAMS

The impact of the WT on the dynamic behaviour of the floater 
also needs to be discussed. Due to the presence and operation 
of the WT (including gravitational and inertial/gyroscopic 
effects, and aerodynamic loading), the forces owing to the added 
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both in 2D and 3D, as well as to the mooring tensions exerted 
on the mooring lines at the point where they are attached to the 
floater (for the coordinates of this point, see Table 2). Finally, the 
results are discussed in terms of the wave direction, the wave 
frequency, and the qualitative behaviour of each graph, and their 
maximum values. The numerical results presented in the following 
correspond to regular waves of height H = 2 m.

EXCITING FORCES AND MOMENTS

Τhe excitation forces and the wave moments are calculated 
with the aid of NEMOH and HAMS software. More details can 
be found in [41, 42]. The wave forces are derived by integrating 
the hydrodynamic pressures acting on the wetted part of the 
floater. The potential of the incident wave and the diffraction 
potential are considered in the calculation of the hydrodynamic 
pressures. By exploiting the linearised Bernoulli equation, the 
following general form of Equation (4) is derived:

Fi = –iωρ ∫∫s  φndS     (4)

where φ is the incident and diffracted potential, n is the 
normal vector pointing outwards from the wetted surface 
into the fluid, and S denotes the wetted surface. Similarly, the 
overturning moments acting on the floating structure are given 
by Equation (5):

Mi = –iωρ ∫∫s  φ(x × n)dS   (5)

Figures 8–10 show the first-order wave loads and moments 
for a range of angular frequencies and wave directions. Due to 
the double symmetry of the rectangular floater, the forces Fy 
and the moments Mx are omitted.

Fig. 8. First-order wave loads in the direction exerted on the floating platform 
versus ω for wave headings of 0º, 30º and 45º 

Fig. 9. First-order wave loads in the direction exerted on the floating platform 
versus ω for wave headings of 0º, 30º and 45º 

Fig. 10. First-order wave loads My on the floating platform versus ω for  
wave headings of 0º, 30º and 45º 

From Figures 8–10, it can be observed that all the curves 
obtained from NEMOH and HAMS follow the same trend. The 
horizontal forces presented in Figure 8 form three peaks, with 
the first one at ω = 0.6 rad/s, while the second (with a higher 
value) and third clearly depend on the wave heading. The 
vertical forces start with a maximum value at ω = 0.1 rad/s, 
and then decrease drastically at ω = 0.8 rad/s. The curves related 
to the bending moments around the y-axis follow a similar 
trend to those of the horizontal forces, but for wave headings 
of 0° and 30°, the maximum value is seen for the first peak, 
and specifically at ω = 0.6 rad/s. All of these behaviours are 
attributed to the interactions between the cylinders and the 
incoming regular waves.

WAVE ELEVATION ARROUND THE PLATFORM

In this section, the free surface elevation around the structure 
is discussed for values of ω = 0.6 rad/s with a wave heading 0°, 
ω = 1.1 rad/s for a wave heading of 30°, and ω = 1.6 rad/s for 
a wave heading of 45º, using the open-source code NEMOH. 
These frequencies are considered due to the fact that the exciting 
forces reach a peak at these values, as described in the previous 
section.

In potential flow theory, the free surface elevation is given 
in terms of the velocity potential (which is actually derived 
based on the kinematic condition of the free surface at z = 0), 
as shown in Equation (6):

η = iωд  ∂φ
∂t        (6)

where η denotes the free surface elevation, and φ represents 
the incident wave and diffraction potentials. 

Fig. 11. 2D perturbation of the free surface around the floating structure  
for ω = 0.6 rad/s and wave heading 0°
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Fig. 12. 3D perturbation of the free surface around the floating structure  
for ω = 0.6 rad/s and wave heading 0°

Fig. 13. 2D perturbation of the free surface around the floating structure  
for ω = 1.1 rad/s and wave heading 3°

Fig. 14. 3D perturbation of the free surface around the floating structure  
for ω = 1.1 rad/s and wave heading 30°

Fig. 15. 2D perturbation of the free surface around the floating structure  
for ω = 1.6 rad/s and wave heading 45°

Fig. 16. 3D perturbation of the free surface around the floating structure  
for ω = 1.6 rad/s and wave heading 45°

At ω = 0.6 rad/s (Figures 11, 12), the maximum value of the 
free surface elevation is approximately 0.2, around the four offset 
cylindrical tubes. At ω = 1.1 rad/s (Figures 13, 14), the free 
surface elevation obtains its maximum value of approximately 
1.4, at the back of the second offset cylinder of the floating 
structure (see Figure 2). Finally, at ω = 1.6 rad/s (Figures 15, 
16), the maximum value is around 1.5 at a position between 
the first cylinder and the main central column of the floater.

ADDED MASSES AND HYDRODYNAMIC  
DAMPING OF THE FLOATER

The behaviour of the added mass coefficients as a function 
of the incident wave frequency is shown in Figures 17 and 18, 
while the behaviour of various damping coefficients is shown 
in Figures 19 and 20. As discussed above, these hydrodynamic 
parameters were explicitly derived from the two software 
packages that were used in this study [41, 42].

The solution to the radiation problem is related to the added 
mass and damping matrices; as depicted in the following graphs, 
these coefficients are frequency-dependent.

Fig. 17. A11 as a function of the wave frequency

Fig. 18. A33 as a function of the wave frequency
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From Figure 18, a pronounced difference between the two 
graphs can be observed. This can be attributed to whether or 
not the brackets that interconnect the cylindrical columns of the 
floating structure are included in the discretisation needed for 
the solution to the hydrodynamic problem. More specifically, 
although the curves follow the same qualitative trend, when 
HAMS is used (i.e., the brackets are taken into account), the 
A33 added masses are approximately 1500 t larger than those 
predicted by NEMOH, where the brackets are excluded from 
the discretisation. This difference is equal to the additional 
buoyancy due to the brackets of the floater. This is because when 
the brackets are included in the discretisation of the structure, 
the displacement volume of the structure is greater, and hence 
the additional mass is greater. Consequently, in order to ensure 
a more precise calculation of the movements of the floating 
structure, the brackets should be included in the discretisation.

Fig. 19. B11 as a function of wave frequency

Fig. 20. B33 as a function of wave frequency

MOTION OF THE FLOATING PLATFORM 

In this subsection, we present some numerical results for the 
RAOs of the platform. It was assumed for these calculations 
that the wind speed was 11.4 m/s. Figures 21 and 22 show the 
RAOs of the surge and heave motions of the floater. These 
RAOs are nondimensionalised by the term H/2, which is the 
wave amplitude, where H is the wave height (Η = 2 m). Due 
to the double symmetry of the platform, the sway motions are 
not considered here; as expected, they exhibit an analogous 
configuration with the surge motions, relative to the direction of 
the incoming wave. As expected from a physical analysis, when 
the incoming wave is parallel to the x-axis, the surge motion 
is higher (β = 0°), and this decreases as the wave’s direction 
becomes vertical to the x-axis (or equivalently parallel to the 
y-axis) (see Figure 2). We also observe that all the curves start 
from an initial maximum value at ω = 0.1 rad/s which then 

decreases rapidly, with an explicit (although significantly 
smaller) peak at ω = 0.3 rad/s. For greater values of the wave 
frequency, the platform is only very slightly affected. 

Fig.21. Surge RAOs for the floating platform with the WT, for three different  
directions of the incident wave, under the buoy mooring system

Figure 22 shows the RAOs of the heave motion of the floater. 
The heave motions have a particular feature: the curves for 
ω = 0.1 to 0.7 rad/s and ω = 1.1 to 2.0 rad/s coincide, for each 
pair of directions. The heave motion reaches a maximum value 
of 1.453 at ω = 0.8 rad/s and the corresponding curve then 
exhibits an abrupt decrease. We can also observe that the vertical 
motion of the platform is practically zero for all wave directions 
when ω > 1.7 rad/s.

Fig. 22. Heave RAOs for the floating platform with the WT for three different  
directions of the incident wave, under the buoy mooring system

Figure 23 shows the results for the pitch motion of the 
platform. Once again, the graph for the roll motion is neglected 
here, since it is analogous to the pitch motion, as expected. 
The RAOs of the rotational motions are nondimensionalised 
by the term kH/2, where k is the wavenumber. The maximum 
rotation around the y-axis is obtained when the x-axis is parallel 
to the incident wave. Its value is 5.678 for a wave frequency of 
ω = 0.3 rad/s. 

Fig. 23. Pitch RAOs for the floating platform with the WT for seven different  
directions of the incident wave, under the buoy mooring system
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MOORING LINE TENSIONS

Neither NEMOH and HAMS could be used to calculate 
the tensions exerted on the floating structure by the mooring 
system. However, by applying the method presented in [30, 45] 
the tension in each branch of the mooring system was obtained. 
Figs. 24–27 present the tensions of the mooring system for three 
different wave headings of 0°, 30° and 45°. 

The first observation that can be made is that all the curves 
follow a similar trend. We can also see that the mooring tensions 
are only slightly affected by the wave heading, and that the 
relevant discrepancies are small. The maximum mooring forces 
are seen at ω = 0.1 rad/s, and decrease drastically with increasing 
ω. In addition, as can be seen in Figures 24 and 25, there is an 
initial peak at ω = 0.3 rad/s and a smaller secondary one at 
ω = 0.8 rad/s. Moreover, the mooring tensions become greater 
at a wave heading of 45° in all cases. Finally, for ω > 1.5 rad/s, 
the mooring tensions tend practically to zero.

Fig. 24. Total mooring forces on the first mooring line

Fig. 25. Total mooring forces on the second mooring line

Fig. 26. Total mooring forces on the third mooring line

Fig. 27. Total mooring forces on the fourth mooring line

CONCLUSION

The aim of this study was to analyse the dynamic behaviour 
of a semi-submersible platform supporting a 10MW WT, 
under a four-branch mooring system with buoys. To this end, 
a coupled analysis was employed. It was assumed that the wind 
speed was 11.4 m/s. The hydrodynamic boundary value problem 
was solved numerically using two BEM software packages called 
NEMOH and HAMS. The added masses, damping coefficients, 
and stiffness matrices of the WT were taken into consideration 
in order to reduce and incorporate the gravitational, inertial, 
gyroscopic, and aerodynamic effects of the WT on the floating 
structure. The results were examined primarily in terms of 
the impact of the wave heading and angular frequency on the 
maximum values of the physical quantities under consideration. 
The hydrodynamic behaviour of the floater was examined both 
with and without braces.

Several numerical results were presented for the RAOs of 
the floater, and the exciting forces were compared to those 
originating from the added masses and damping coefficients of 
the floating structure, with and without braces. The curves of 
the exciting forces were found to follow a similar pattern, while 
the wave heading seemed to have an influence on the incoming 
wave frequency at which the maximum value appeared. For 
the RAO of the surge motion, it was found that all the curves 
started from an initial maximum value at ω = 0.1 rad/s and 
then decreased rapidly, with a pronounced but much smaller 
peak at ω = 0.3 rad/s. In regard to the heave motion, the curves 
coincided for specific directions of the incoming wave, and the 
same effect was also observed for the yaw motion. The maximum 
value for the RAO of the pitch was reached at ω = 0.3 rad/s. The 
position of the maximum value of free surface elevation was 
not constant, and clearly depended on the wave frequency. 
The mooring tensions were not greatly affected by the wave 
heading. The relevant curves started from a maximum value 
and then formed two more peaks with a significantly smaller 
magnitude. Finally, in all cases, the mooring tensions tended 
to zero for ω > 1 rad/s. 
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AbstrAct

This paper focuses on the effect of water depth on the hydrodynamics of floating offshore wind turbines with open-hole 
anti-heave devices. The three-floating-body wind turbine platform is used as the primary research object in this paper. The 
effect of water depth on the reduction of the heave motion of a floating platform with anti-heave devices is systematically 
investigated through a series of experiments and numerical simulations. The results show high agreement between the 
test results and simulations, with larger values of heave motion in deep water. A wind turbine platform with anti-heave 
devices can effectively reduce the lifting and sinking motions when the wave period is large.

Keywords: anti-heave device; hydrodynamic analysis; different water depths

introduction

Wind energy is a non-polluting, high retention and high 
potential renewable energy source, which has good prospects 
for development and application. Wind speed at sea is more 
stable and stronger than that on land because of its higher 
energy yield. By the end of 2020, offshore wind power’s installed 
capacity surpassed 30 GW [1]. In areas of shallow water, there 
is considerable potential for bottom-fixed foundations, such as 
gravity and monopile types, which are limited to a maximum 
water depth of 15 and 30 m, respectively [2]. However, most of 
the offshore wind potential is located at sites with water depths 
of more than 60 m, where there is a greater advantage over the 
fixed type [3]. Floating offshore wind turbine (FOWT) platforms 
are more versatile in deep-sea applications [4]. In addition, 
semi-FOWTs can be efficiently used in a wide range of water 
depths [4]. Therefore, it is of great significance to study the 
platform’s dynamic characteristics of semi-FOWTs at different 
water depths.

Many scholars have investigated the performance of FOWTs. 
Nematbakhsh et al. [6][7] investigated the dynamic response 
characteristics of TLP-type floating wind turbine systems and 
Spar-type floating wind turbine systems by using the CFD 
method and simplifying the turbines at a constant thrust. 
Hu et al. [8] investigated the dynamic response of a semi-
submersible FOWT system under various excitations. The 
structural loading, in the case of emergency shutdown, has 
a stronger dynamic response. Abou-Rayan et al. [9] investigated 
the dynamic responses of triangular, square and pentagonal 
TLP configurations under multidirectional regular and random 
waves. Barrera et al. [10] explored the role of spectral wave 
characteristics and wave time histories in estimating extreme 
mooring loads for a floating offshore wind turbine. Zhao et al.
[11] investigated the analysis of a kinematic fully-coupled time-
domain simulation of a DTU10MW, comparing the motion 
response of DTU10MW with NREL5MW. The conclusions 
showed that the wind and waves had a more pronounced 
excitation effect on the DTU10MW wind turbine. Alkarem 
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et al. [12] investigated the effect of wave irregularities on the 
hydrodynamic response of a floating offshore wind turbine 
for FOWT at different water depths. Bae et al. [13] combined 
CHARM3D and FAST software to calculate the TPL floating 
wind turbine under different operating conditions and operating 
at water depths of 80 m and 200 m, carrying out numerical 
simulations in time domain analyses. Bayati et al. [14] analysed 
the effects of water depth on a semi-submersible type FOWT, 
where the water depth ranged from 30-200 m. It is claimed that 
water depths influence heave motion more than surge motion, 
when water depth decreases from 200 m to 30 m. Chen et al. 
[15] analysed the motion response of a wind turbine support 
platform, considering water depth effects. It is claimed that the 
effects of water depth mainly happen at shallower water depths. 
From a structural safety point of view, water depth effects need 
to be considered during the design process and the motion 
analysis of floating wind turbines. Le C et al. [16] proposed 
a new submerged offshore wind turbine aimed at operating in 
intermediate water depths between 20 and 200 m. Feasibility 
studies concerned different environmental conditions, tether 
length, tether pretension, and tether failure scenarios. Zhang 
et al. [17] studied the fully coupled analysis of the V-shaped 
floating wind turbine platform at different water depths; the 
mooring tension characteristics were analysed under different 
load conditions, yielding possible mooring schemes for different 
water depths. Studies have shown that surge, heave, and pitch 
motions are more stable at medium water depths. Lin [18] 
conducted a study of the impact of water depth (ranging from 
200-300 m) on the performance of a floating offshore wind 
turbine. The results indicated that, as the water depth increases, 
the platform’s heave motion tends to noticeably increase with 
mooring configuration. 

In the design of FOWTs, water depth is considered as a design 
factor that must be addressed. In most of the research into 
reducing platform motion for improved stability, most of the tests 
are only conducted for a single water depth, ignoring the effect of 
water depth on platform motion. The ‘deepCwind’ platform base 
is taken as the research object in this paper. The hydrodynamic 
performance of a model with a chamfered perforated anti-heave 
device is systematically investigated through experiments with 
different water depth variations. Then, the models tested are 
compared and validated by full-scale numerical simulations. 
Finally, the effect of water depth variation on the reduction of 
heave motion is analysed by numerical simulation.

towinG tanK EXpErimEnt

floatinG body witH anti-HEavE dEvicES  

Heave plates have the advantage of increasing the damping 
and additional mass coefficients in floating platforms, which 
can effectively increase the resistance of the platform and 
enhance stability. Wang et al. [19] studied the effect of opening 
holes on the pendulum plate, with chamfering angles of the 
holes from 0-35°, through a large number of experiments and 
numerical simulations. Among these, the 35° chamfered holes 

of the three-floating-body wind turbine platforms have the 
best effect on heave reduction. This paper selected a baseline 
offshore wind turbine designed by NREL 5 MW [20]. The data 
for the floating wind turbine platform with anti-heave devices 
are shown in Table 1. The single pontoon model, cross-section 
of the anti-heave device, and model of the platform with an 
anti-heave device are shown in Fig. 1.

Tab. 1 Overall parameters of floating offshore wind turbine

Parameters of wind turbine Values

Rated power [MW] 5

Rotor diameter [m] 126

Cut in/Rated wind speed [m/s] 3/11.4

Cut in/Rated rotor speed [rpm] 6.9/12.1

Parameters of single floating body Values

Height [m] 32

Diameter [m] 12

Diameter of anti-heave device [m] 24

Height of central column [m] 6

Number of perforations 10

Chamfer angle [deg] 35

Overall parameter Values

Total mass [kg] 1.37 × 107

Fig 1. Anti heave device model

dESiGn of EXpErimEntS

Selection of scale ratio
According to the purpose of the test and the overall response 

characteristics of the floating wind turbine, it is necessary to 
satisfy the geometric similarity, kinematic similarity, and 
dynamic similarity [22]. At the same time according to the 
aerodynamic properties of the blade rotation, the TSR (tip speed 
ratio) was ensured to be similar [23]. In order to achieve similar 
overall load and wind turbine rotational effects, similar criteria 
were used in the equations:

LS
Lm

 = λ        (1)

Vm

√дLm
 = VS

√дLS
       (2)
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VS = λ1
2 Vm      (3)

RTS = ΩS RS
US

 = Ωm Rm
Um

    (4)

RS = λ– 12 Rm      (5)

L is the length of the object feature, λ is the reduction ratio, 
V is the average velocity of the object with respect to the flow 
field, Ω is the rotational velocity of the impeller, R is the radius 
of the blades, and U is the average wind speed.

Based on the master scale, the scaling ratio was chosen as 
λ = 60. Table 2 shows the factors used to model the physical 
quantity conversion relationships:

Tab. 2. Relationship between model and actual physical quantity conversions
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Experimental arrangement
Wave conditions were realised by the towing tank at Zhejiang 

Ocean University, which can control wave frequency and wave 
height to create stable regular waves.

Fig. 2. Floating body model device and experimental arrangement diagram

The experiments included the acceleration of the platform 
motion, the 3-way accelerometer (Range: ±4g; Accuracy: 
0.1%FS) at the top of the tower, by arranging the accelerometers, 
and the ULD2000 wave monitoring (Range: 0~0.5 m; Accuracy: 
0.1%FS) and wind monitoring (Range: 0~40 m/s; Accuracy: 
±0.5g + 2% FS). The pedestal model was obtained by 3D 

printing, which ensured smoothness and water tightness. The 
total mass of the model was 63.5 kg (including bulk) and the 
draft was 0.34 m. The mooring line (Fig. 2(a)) consisted of 
a 6.2 mm diameter steel wire rope (13.5 kg per 100 m) with 
a mass of 0.158 kg/m per unit length as the mooring cable; 
a 10 kg block was used in the towing tank as the mooring 
weight to fix the position of the mooring line. The experimental 
arrangement is shown in Fig. 2(b), consisting of a wind turbine 
blade and a float. The overall layout of the experiment and the 
environmental conditions are shown in Fig. 2 (c), which has 
three main components: the wave generation system, the wind 
generation system, and the wave dissipation system. The float 
model had a false bottom with adjustable depth, to control the 
water depth.

Due to the purpose of the experiment and the limited 
experimental conditions, this experiment was mainly carried 
out to study the heave motion response of the floating platform 
and the effect of the 35° chamfered holes on the heave motion 
of the anti-heave devices.

contEntS of tHE modEl tESt

Hydrostatic decay tests
The hydrostatic decay test allows for obtaining the intrinsic 

period of the whole turbine system. For the hydrostatic free decay 
test, the upper turbine was set to stop and then adjusted so that 
the azimuth of one of the blades equals 0° (vertically upwards).

model experiments under combined wind and wave action
According to the NERL-5MW wind turbine rating and the 

experimental wind and wave conditions, the scale conversion 
from Table 2 was used to select a constant wind speed of 1.30 m/s 
for this experiment; the waves were selected from the 15 sets of 
conditions, in Table 3, for the experimental conditions under 
combined wind and wave action. 

Tab. 3. Experimental working conditions of the model under 
combined wind and wave action

Condition
Number

Wave Frequency 
[Hz]

Wave Height 
[m]

Water Deep
[m]

1 0.40 0.15 1.2

2 0.50 0.15 1.2

3 0.65 0.15 1.2

4 0.40 0.15 1.5

5 0.50 0.15 1.5

6 0.65 0.15 1.5

7 0.40 0.15 2.0

8 0.50 0.15 2.0

9 0.65 0.15 2.0

10 0.40 0.15 2.5

11 0.50 0.15 2.5

12 0.65 0.15 2.5

13 0.40 0.15 3.0

14 0.50 0.15 3.0

15 0.65 0.15 3.0
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the effective dynamic viscosity of fluid, in which n and are the 
kinematic and eddy viscosity, respectively; and fσ is a source 
term due to surface tension, which only takes effect at the free 
surface and equals zero elsewhere.

In order to capture the interface or free surface between 
air and water in a FOWT, the volume of fluid (VOF) method 
was used [25]. In the volumetric fluid method, the surface 
configuration was realised by the volume fraction, which varied 
between 0 and 1, depending on the percentage of the water 
phase in the cell volume. α = 1 for the water cell, α = 0 for the 
air cell and 0 < α < 1 for the air-water interface. The advection 
equation for a volume fraction is:

дα
дt  + 

Δ

 · (Uα) +  

Δ

 · [Urα (1–α)] = 0   (8)

A bounded compression technique was adopted to better 
capture the free surface, introducing an additional third 
compression term on the left-hand side of the transport 
equation, where Ur is a velocity field used to compress the 
interface. 

computational domainS  
and pHySical modElS

The fluid domain range was selected to be -200 to 1000 m 
in the X direction, 200 m in the Y direction, and -160 to 300 m 
in the Z direction of the platform. 

The front of the computational domain was set as the velocity 
inlet and the velocity was controlled by the velocity of the 
first-order VOF wave. The back of the computational domain 
was set as the pressure outlet and the pressure controlled by 
the hydrostatic pressure of the first-order VOF wave[26]. In 
addition, concerning the physical conditions of the model 
tested, a wave-damping zone was set up, considering the wave 
reflection near the outlet boundary; it minimised the effect of 
wave reflection on the far downstream outlet boundary[27].

The mooring system was set up in the form of three 
suspension chain lines, each with an angle of 120°, connected to 
three cable guide holes located at the bottom of the pontoon and 
a cable guide anchor located at the bottom of the computational 
domain[28].

towinG tanK EXpErimEnt rESultS

This experiment was conducted to measure the acceleration 
of a wind turbine platform with anti-heave devices. However, 
the actual process can interfere with the acceleration and 
the interference needs to be processed [24]. Integrating the 
processed acceleration twice gives the range of motion of the 
platform. The heave responses at different frequencies for each 
water depth are represented in Fig. 3. 

The amplitude of the heave increases with the increase in 
water depth; the heave slowly increases when the water depth 
is 2-3 m.

numErical Simulation and 
EXpErimEntal compariSon of wind 

turbinE platformS at diffErEnt 
watEr dEptHS

In this paper, a complete numerical simulation of a semi-
submersible floating platform and NREL 5-MW wind turbine 
model was analysed using commercial CFD software STAR-
CCM+ (17.02). The coupled response of the floating platform 
with anti-heave devices was specifically analysed under 
combined wind and wave conditions.

numErical mEtHodS

For transient, incompressible, and viscous fluids, the flow 
is governed by the continuity and Navier-Stokes equations:

Δ

 · u = 0       (6)

дρU
дt  + 

Δ

 · (ρ(U–Uд) U) = –

Δ

Pd –д · x 

Δ

ρ +

 

Δ

 · (μeff 

Δ

U) + ( 

Δ

U) · 

Δ

μeff + fσ    (7)

U and Ug represent the velocity of the flow field and grid 
nodes; Pd is the dynamic pressure of the low field (from 
subtracting the hydrostatic part from total pressure p); g is the 
gravity acceleration vector; r is the fluid density; eff denotes 

Fig. 3. Heave response of the floating body at different wave frequencies
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mESH

The convergence of the numerical simulation was verified 
by comparing three different grid numbers: 1.31  ×  107, 
1.08 × 107, and 7.8 × 106. Fig. 4 represents the heave motion of 
the deepCwind turbine platform with different computational 
domain sizes under the same wave height and wave frequency, 
under the action of the floating-body heave.

Fig. 4. Verification of the convergence of the calculation 
results by the number of grids

Comparing the three different calculation mesh quantities, 
the heave motion value of the three-floating-body wind turbine 
platform changes less when the calculation domain is small, 
and the Z-direction displacements of the DeepCwind platform 
are closer to each other as the calculation domain keeps 
increasing. Considering the number of grids, computational 
time consumption, and reliability of the results, 1.08 × 107 grids 
and 0.1 s time steps were selected for the related numerical 
analysis. The grid layout is shown in Fig. 5.

Fig. 5. Computational domain and mesh

rESultS and diScuSSion

The main results discussed in this section include ‘free decay’ 
and ‘kinematic response’. Numerical analyses were performed 
on the full-size model and the results scaled, as in Table 2.

compariSon of HydroStatic  
dEcay EXpErimEntS

The free decay motion of heave and pitch is illustrated in 
Fig. 6. On the free decay curve, the time interval between 
two adjacent peaks or troughs is one oscillation period. The 
corresponding intrinsic period of the free decay motion can 
be obtained by randomly selecting multiple neighbouring 
peaks (troughs) and calculating the average value of multiple 
oscillation periods.

Fig. 6. Free decaying motion

Tab. 4. Natural periodicity of wind turbine platforms with damping devices

Parameters Model  
Value [s]

Simulation 
Values [s]

Difference
[%]

Heave period 16.78 17.67 5.0%

Pitch period 26.45 25.61 3.2%

The platform heave and pitch motions between hydrostatic 
attenuation test results and values were compared. The 
experimental and numerical simulation values differ between 
5.0% and 3.2%. These discrepancies could arise from various 
sources, including model simplifications, scaling effects, and 
experimental errors.

compariSon of numErical Simulation and 
EXpErimEntal rESultS

Numerical simulations of a real-scale wind turbine platform 
were carried out by experimental working conditions. The 
numerical simulation included the analysis of the water depth 
on the wind turbine platform with anti-heave devices and the 
original model [20]. The reliability of the numerical simulation 
was verified through experiments and the analysis of the heave 
motion in the model with anti-heave devices, as well as the 
original model.

By simulating the five water depths for the working conditions 
and comparing them with the experimental results, the time 
domain curves for different cases are shown in Fig. 7.

Fig. 7. Numerical and experimental results in the different  
water depth conditions.
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The numerical simulation data were converted to a particular 
scale and compared with the experimental data. As seen in Fig. 7, 
the numerical simulation and experimental results can maintain 
the same heave trend in the same cycle and the motion amplitude 
of the experiment is larger than that of the numerical simulation. 
It can be seen that, the larger the period, the better the match. 
At wave period 15.49 s, the difference between the experimental 
and simulated values for each water depth is minimal. The error 
may be due to the constraints of the pedestal in the numerical 
simulation, the difference in the conduit material, and the error 
of the experimental equipment when capturing the motion. 
The average amplitudes of the experimental and numerical 
simulation results are shown in Table 5.

As shown in Table 5, the average amplitude of the heave 
motion in the numerical simulation and testing kept the same 
change rule. For the same frequency, the deeper the water depth, 
the greater the amplitude of the floating body movement when 
the water depth position was more than 2 m (the actual value 
was 120 m). When the movement amplitude grows slowly and 
tends to be stable, at this time, the water depth tends towards 
the infinite; however, at the same water depth position, the wave 
period is large, the amplitude of the floating body movement 
increases, and the numerical simulation results are in better 
agreement with the experimental results. The anti-heave 
device with 35° chamfered holes has a similar change in the 
response of the heave motion to the original model. In most 
working conditions, the heave motion reduction effect of the 
35° chamfered perforation model is obvious.

concluSionS

In this study, the experimental and numerical methods are 
used to investigate the kinematic response of a floating wind 
turbine platform with chamfered holes and anti-heave devices. 

The following conclusions were obtained by analysing the heave 
motion at different water depths and wave periods. 

(1)  When the water depth becomes deeper, the amplitude 
of the heave motion of the three-floating-body wind 
turbine platform increases. At depths greater than 120 m 
(deep water) the amplitude of the heave motion increases 
slowly and stabilises.

(2)  The anti-heave effect of the three-floating-body wind 
turbine platform is affected by different waves. In most 
working conditions, the heave motion reduction effect 
of the wind turbine platform with anti-heave devices is 
obvious.

(3)  The effect of heave reduction of the wind turbine platform 
with anti-heave devices is more evident when the water 
depth increases. The smaller the wave period, the more 
obvious the effects of the reducing heave. 
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AbstrAct

In this study, the authors present a theoretical analysis and experimentally verified methods to improve the Energy 
Efficiency Design Index (EEDI) of ships. The improvements were studied via the application of an innovative solution of 
a thruster supplied by a hybrid power system on board a passenger-car ferry. The authors performed sea trials of a ship’s 
electrical power system supplied by battery packs with diesel generating set power units. The experimental study focused 
on energy balance and management, which were considered together with related power quality issues. The authors 
found that the application of an energy storage system to the ferry, such as batteries, with the simultaneous adaption of 
the operation modes of the electrical power system for current exploitation, significantly improved energy efficiency. Fuel 
consumption and CO2 emission were reduced, while adequate parameters of electrical power quality were maintained 
to meet classification standards.

Keywords: Energy Efficiency Design Index, thruster supplied by hybrid power system, energy balance, power management, electrical power 
quality parameters, classification institutions

INTRODUCTION

Increased energy/fuel efficiency and reduced greenhouse 
gas emissions, such as CO2, NOX and SO2, have become 
important challenges for shipbuilders, operators and regulators. 
These challenges are the most intensively explored issues in the 
domain of maritime transport. Greenhouse gas emissions are 
typically limited to CO2 emissions [1] and are associated with 
fuel consumption by ships. Ship fuel consumption is dependent 
on the total energy demand of the ship, including electrical 
energy. Therefore, optimising and utilising generated electricity 
is important for limiting fuel consumption and, consequently, 
CO2 emissions. CO2 emissions in global maritime transport are 
controlled by the International Maritime Organisation (IMO), 
and other organisations, via the internationally regulated Energy 

Efficiency Design Index (EEDI). This index applies to all vessels 
built after 2013 with a tonnage exceeding 400 GT and the goal is 
to establish the minimum energy efficiency of ships according 
to their type and size. The EEDI is expressed as the ratio of CO2 
emissions (in grams) to the transport work of a vessel in ton-miles. 
Following the IMO concept [1], the CO2 reduction level for the 
first phase has been set to 10%, covering the following ship types: 
tankers, bulk carriers, gas carriers, general cargo ships, container 
ships, refrigerated cargo carriers and combination carriers. In 
2014, the IMO stated [1] that the adopted amendments to the 
EEDI regulations will extend the scope of this coefficient to LNG 
carriers, ro-ro cargo ships (vehicle carriers), ro-ro cargo ships, ro-ro 
passenger ships and cruise passenger ships with non-conventional 
propulsion. This extension also includes ships equipped with hybrid 
power systems, such as battery-powered systems.

https://orcid.org/0000-0002-5359-0433
https://orcid.org/0009-0000-9841-5914
https://orcid.org/0000-0002-8943-9700


POLISH MARITIME RESEARCH, No 1/202444

The next step of the considered rules development proceeded 
under the auspices of the Marine Environment Protection 
Committee (MEPC), during its last session on July 3-7, 2023. The 
MEPC 80 session adopted the 2023 IMO Strategy on the ‘Reduction 
of GHG Emissions from Ships’, with enhanced targets, to tackle 
harmful emissions [2]. The revised IMO GHG Strategy includes 
an enhanced common ambition to reach net-zero GHG emissions 
from international shipping close to 2050, a commitment to ensure 
an uptake of alternative zero and near-zero GHG fuels by 2030, 
and indicative check-points for 2030 and 2040. Amendments to 
the International Convention for the Prevention of Pollution from 
Ships (MARPOL) Annex VI came into force on 1 November 2022. 
Developed under the framework of the Initial IMO Strategy on the 
Reduction of GHG Emissions from Ships (agreed in 2018), these 
technical and operational amendments require ships to improve 
their energy efficiency in the short term, thereby reducing their 
greenhouse gas emissions [3]. From 1 January 2023 it is mandatory 
for all ships to calculate their attained Energy Efficiency Existing 
Ship Index (EEXI), to measure their energy efficiency and to initiate 
the collection of data for the reporting of their annual operational 
carbon intensity indicator (CII) and CII rating [3]. EEXI is calculated 
using the same formula as EEDI and represents “the amount of CO2 
emissions from a ship when the ship sail transports one ton cargo 
for one nautical mile”. Regardless of a ship’s delivery date, ships of 
400 GT and above, which are engaged in international voyages, are 
subject to the EEXI regulations and the EEXI of each ship needs to be 
calculated. Ships of a specific size  are subject to the EEXI regulations 
and need to comply with the requirements, equivalent to the EEDI 
requirements of 2023. Under the EEXI regulations, vessels classified 
as a ‘Bulk carrier’, ‘Tanker’, and ‘Ro-ro cargo ship (vehicle carrier)’ 
need to comply with the EEXI requirement equivalent to the Phase 2 
EEDI requirement, while a ‘Containership’, ‘General cargo ship’, 
‘LNG carrier’, and ‘Gas carrier’ would need to comply with the 
EEXI requirement equivalent to the Phase 3 EEDI requirement. 
Therefore, a ship subject to EEDI regulations, which complies with 
the Phase 2 or Phase 3 requirement, automatically complies with 
the EEXI regulations. If a ship does not meet the EEXI requirement, 
the ship needs to implement any countermeasures, such as engine 
power limitation or the installation of energy saving devices, etc., 
to improve their EEXI.

In recent years, battery-powered ships have been widely 
explored in various studies [4–7]. These studies analysed many 
aspects For example, [4], [5], and [8], analysed the impact of 
new conversion technologies, such as power electronics, battery 
energy storage and DC power systems, on overall energy 
efficiency, power quality and emission levels and discussed 
them thoroughly. Some studies [6] used specific methods and 
tools to provide accurate estimates of the battery state of charge 
(SoC), which is a critical factor for the safe and reliable operation 
of battery systems. A few papers have presented the main 
problems encountered by designers of small, hybrid-powered 
ferries powered by lithium batteries, including energy balance 
issues and the development of an energy management policy 
[7]. In this study, the authors considered and compared their 
results with existing state-of-the-art research in this field and 
present an analysis and experimental verification of methods to 
improve the energy efficiency of ships using a thruster supplied 
by a hybrid power system. The presented article focuses on the 

new challenges in energy balance and energy management policy 
and considers related power quality issues in modern ferries, 
when using innovative propulsion systems. This study focuses 
on a passenger-car ferry, which began operation in 2021.

In this paper, improving the EEDI is presented by using an 
example of a modern, two-way hybrid electric ferry. The ferry 
was designed for coastal shipping between Norwegian fjords 
and designed with the understanding that, during crossings 
between ports, energy will be primarily sourced from battery 
banks, which will be charged during stops. However, in unforeseen 
situations, it is possible to use diesel generating set power units 
(part of a hybrid propulsion system) in the electric power system 
of passenger-car ferries. Using the operational strategy adopted by 
the Norwegian ferry operator, the project focuses on minimising 
energy consumption. This involves the following solutions: (I) 
powering the vessel from battery banks combined with diesel  
generating sets, (II) energy-efficient LED lighting, (III) flexible 
power supply systems using power electronic frequency converters, 
(IV) underwater hull coatings to reduce friction, (V) specially 
designed hull shapes to minimise water resistance, and (VI) 
lightweight ship hull construction. All of these solutions were 
implemented in practice by the designers and shipbuilders of the 
ferry but they are presented in this paper with different importance. 
The solutions I, II and III, concerning the limitation of electrical 
energy consumption on board the ship, are considered in this 
way, and the authors concentrate on examining the impact of 
implementing the conditions outlined in the introduction, mainly 
solution I. This examination was experimentally verified on the 
basis of the sea trials case study and is presented in the related 
chapters of the article. Solutions II and III were analysed and 
discussed on the basis of the literature on the subject and the 
authors’ professional experiences, but only in the context of their 
influence on a worsening of power quality in the considered ship 
electrical power system. The remaining solutions, i.e. solutions 
IV, V and VI, concern improving the EEDI by minimising ship 
hull friction and reducing its resistance to water. Moreover, the 
latter solution enables the increase in deadweight tonnage of cargo 
transported by the ship. In consequence, the aforementioned 
solutions provide the means to increase the ship’s transport work 
and reduce fuel consumption.

This paper is organised as follows. In the second section, we 
provide a short description of the selected design and operational 
indexes characterising the energy efficiency of the ship. The 
following sections present a standard passenger-car ferry as the 
object of investigation, formulation of the problem, and a short 
description of the plan and conditions of experiments performed 
during the sea trials. The fifth section highlights the issues of energy 
balance, energy management and power quality as the main aspects 
of the experimental verification of the improvement of the ship’s 
energy due to the hybrid power system. The experimental results 
are then presented and discussed. The last section concludes the 
study and includes recommendations.

ENERGY EFFICIENCY MEASURES

The full description of the algorithm for the EEDI is 
complicated [8]. However, its simplified form can be found in [9].
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EEDI = 1E  (A + B + C – D)    (1)

A, B, and C represent the CO2 emissions of the main engine(s), 
auxiliary engine(s), and shaft generator/motor(s), respectively. 
D is the reduction in CO2 owing to innovative technologies and 
E is the transport work of the ship.

Detailed descriptions of the parts in Eq. (1) are described in [9].
Additionally, another simplified version of the EEDI can be 

expressed as follows [6]:

EEDI = Pinstalled × SFC × CF
DWT × Vref

      (2)

where Pinstalled is the installed power of a ship (in kW), SFC is 
the specific fuel consumption (in g/kWh), CF is the carbon 
conversion factor, DWT is the deadweight tonnage of the ship, 
and Vref is the reference speed.

The initial analysis of Eq. (1) leads to the conclusion that the 
value of the EEDI will be smaller and more favourable for the 
intended objectives when A, B, and C are smaller and when D 
and E are larger.

It is also worth noting that, on the basis of Eq. (2), the EEDI 
value is directly proportional to the installed ship power and 
the coefficients characterising the specific fuel consumption 
and carbon conversion of this ship, as well as varying inversely 
proportional to the product of deadweight capacity and speed 
of the vessel.

Technologies and methods for improving the EEDI that 
implement the above actions are widely described in the literature 
[10,11]. These methods include hydrodynamic optimisations 
(hull design optimisations), propulsion optimisations 
(innovative propulsion system solutions), alternative fuels (LNG 
- Liquefied Natural Gas, CNG - Compressed Natural Gas), 
and other approaches (the use of renewable energy sources, 
operational methods, and innovative solutions for controlling 
the equipment in shipboard electrical systems).

The lower the design value of the EEDI from Eq. (1), compared to 
the threshold value established based on the reference line concept 
[12,13], the more energy-efficient the ship will be according to 
the IMO criteria, which can be expressed by Eqs. (3), (4) and (5).

EEDIattained ≤ EEDIrequired     (3)

Here, EEDIattained is the calculated index based on the complete 
algorithm described in [4] and EEDIrequired is defined by The 
International Convention for Prevention of Pollution from 
Ships (MARPOL), following conventional requirements [7]:

EEDIrequired = (1 – 100
X  ) × Lref     (4)

where X is the reduction factor for selected types of ships 
and Lref is the line reference value, described by the following 
formula [7]:

Lref  = a × b(–c)       (5)

Here, a, b, and c are the tabulated parameters for individual 
ship types.

The EEDI threshold value (EEDIrequired) will be successively 
limited and extended to new ship types following the extension 

program schedule and guidelines adopted by the IMO [1]. 
Finally, these amendments mean that ship types responsible 
for approximately 85% of the CO2 emissions from international 
shipping are included under the international regulatory regime.

It should be noted that EEDI represents a measure of the 
design efficiency of a new ship but it does not explain its 
operational efficiency [9]. Additionally, twin ships with the 
same EEDI may have different operational efficiencies due 
to their different operational profiles and sailing conditions 
[14]. To extend the EEDI design approach, the IMO has also 
developed the Energy Efficiency Operational Indicator (EEOI), 
to indicate the fuel consumption of a specific ship, including 
detailed information, such as cargo mass and the number of 
passengers carried. Appropriate values of EEOI are given for 
single and multiple vessels, according to the description and 
explanation in [15].

OBJECT OF THE INVESTIGATION

The object of this study was a  standard double-ended 
passenger-car ferry (Fig.  1) equipped with an innovative 
electric propulsion system, operating in a diesel–electric hybrid 
configuration. It was powered by battery packs working in 
combination with generators using biodiesel fuel. 

Fig. 1. Standard double-ended passenger-car ferry: (a) ship view based  
on [16] and (b) diagram of the power system equipped with  

diesel–electric hybrid electric propulsion

The electrical power system of this ferry is divided into 
two symmetrical sections: the bow (FWD – Forward part of 
vessel) and the stern (AFT – After part of vessel). Each section 
contains a power generation unit supplying an AC distribution 
board rated at 690 V / 50 Hz, a transformer with ratings of 
500/99/500 kVA and 690/230/540 V / 50 Hz connecting the 
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The third implemented option includes flexible power supply 
systems of selected devices using power electronic inverters. 
Some of the load circuits consist of systems with motors driven 
by power converters, such as propulsion drives, ventilation 
and air conditioning systems and cooling systems. Powering 
motors with variable frequency drives allows the adaptation 
of the motor load to real needs. In such cases, the total energy 
consumed by all electric motors on the ship can be considerably 
reduced. The consequence of using multiple-power electronic 
converters may be an increase in total harmonic distortion 
(THD) in the current waveforms.

Thus, although the primary concern for the shipbuilder and 
operator is energy saving, checking whether the power quality 
parameters comply with the classifying institution standards 
is justified and required.

RESEARCH PLAN

The study involved the improvement of electricity generation 
and its use for effective power management supported 
by solutions that minimise energy consumption. We also 
determined the power quality parameters for this power system.

To determine the power quality parameters, the authors 
measured the voltages and currents during sea trials of the 
ferry using the FWD system as follows: FWD Generating set 
(DG1), FWD Transformer with 540 V side (Transformer 1), 
FWD DRIVE SWBD at DC 1000 V (DC 1000 V) and FWD 
Thruster Unit (Thruster 1). In the DC 1000 V distribution 
board, there was an installed DC/AC converter, producing 
up to 600 V / 64 Hz voltage to supply the Thruster 1 motor. 
Therefore, the measurement system consisted of 15 channels, 
as specified in Table 1. The voltage measurements were carried 
out via transducers from LEM (Life Energy Motion) and current 
measurements were conducted using Rogowski coils from PEM 
(Power Electronic Measurements). The measurement system 
consisted of an industrial computer from National Instruments, 
equipped with a PXIe-8135 controller and three PXIe-6358 
data acquisition cards. The measurement results, recorded as 
instantaneous samples of voltage and current values, were used 
to determine the parameters in the sea trial. The voltage and 
current parameters (Table 1) were calculated using home-built 
software and a dedicated spreadsheet.

Tab. 1. Specifications of the measurement channels and parameters

No. Channels Object Measured 
parameters

Connection points 
for measuring 

probes

1 1,2,3 DG1 U12, U23, U31 AC 690 V / 50 Hz

2 4,5 Transformer 1 U12, U23 Transformer 1

3 6 DC 1000 V U DC 1000 V

4 7,8,9 DG1 I1, I2, I3 AC 690 V / 50 Hz

5 10,11,12 Transformer 1 I1, I2, I3 Transformer 1

6 13,14,15 Thruster 1 I1, I2, I3 DC 1000 V / DC/
AC Converter 1

AC distribution board at 230 V / 50 Hz and the DC at 1000 V, 
battery banks and a propulsion system with a motor rated at 
960 kW, 600 V, and 64 Hz, which is powered by a DC/AC 
converter. The propulsion unit from SCHOTTEL is supplied 
from a DC 1000 V distribution board using a VACON NXI 
power electronic converter, which is an inverter. The inverter 
consists of IGBT switches and produces a symmetrical, 3-phase 
PWM-modulated AC voltage to the motor.

The elements on the configuration diagram (Fig. 1b) have 
designated indexes. ‘1’ refers to the forward part of the electrical 
power system and ‘2’ refers to the aft part of this system. ‘DG’ 
indicates the generating sets and the diesel generator. The ship’s 
electrical power system is equipped with shore charging and 
shore supply (SS), connections for charging battery packs and 
supplying the ship from the shore, and DC guard protection 
modules [17], which enable fast disconnection and full 
selectivity between forward and aft DC grids.

FORMULATION OF THE PROBLEM

The goal of this study was to examine the impact of 
implementing the conditions outlined in the Introduction 
((I), (II), and (III)) for improving the energy balance of the 
ship while maintaining the appropriate parameters of electrical 
energy quality, following the standards of Det Norske Veritas 
(DNV) [16], which surveys the construction process before 
classification of the vessel. Notably, the DNV rules for DC 
battery-powered systems are exclusively focused on the 
DC busbar voltage as the main supply of the system. Other 
switchboards supplying ship systems, such as AC 690 V / 50 Hz 
and AC 230 V / 50 Hz in complementary configurations of 
electric power systems (without energy storage systems), 
fulfil the function of the main switchboards and should 
comply with full verification conditions according to the 
requirements defined in the appropriate rules [18]. However, 
additional checking of the power quality standards related to 
currents is justified by the fact that the systems described under 
conditions (II) and (III) can significantly minimise electrical 
energy consumption on one side. However, strongly non-linear 
elements (LED lighting and power electronic inverters) can 
cause a worsening of the power quality in the considered 
electrical power system.

The first condition (the use of an electric power system 
powered by batteries with DG generating sets) is an energy–
saving solution without the additional consequences of power 
quality degradation in the power system.

The second condition (the application of energy-saving LED 
lighting) has negative effects on the selected electricity quality 
parameters [19]. Results have shown that LED lamps result in 
significant savings in electricity consumption but they behave as 
nonlinear loads, generating higher frequency harmonics, which 
can worsen power quality in the distribution network [20]. 

In our case, with a DC main switchboard, the problem 
concerns the large number of power supplies equipped with 
rectifiers applied to supply a large number of LED lamps in 
the AC system.
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ENERGY BALANCE AND ENERGY 
MANAGEMENT

The energy balance includes the specification of DC and AC 
energy sources and their parameters and the specifications and 
characteristics of the most important loads in the analysed system. 
These specifications are provided in Table 2. The table was prepared 
with loads active during the sea trials highlighted. The other loads 
have been presented as a complementary component.

Table 2 shows that the total sum of the energy loads from the 
thrusters supplied by the 1000 V DC voltage (and other loads 
supplied from the 690 V AC and 230 V AC voltages) reaches up 
to 2619.7 kW (including 1920 kW in the thrusters) and exceeds 

the sum of the energy sources corresponding to 978 kVA (DGs, 
generating sets) plus 1130 kWh (batteries). However, many of the 
loads shown in Table 2 (for positions 1-4, 9-17, and 19-23) only 
work during limited and different time intervals, and depend on 
the given mode of ferry operation. Thrusters typically work by 
using power below their rated values and an appropriately designed 
simultaneity coefficient for the analysed power system. With regard 
to the scope of the article focusing on the sea trials case study, only 
the simplified energy balance for the ferry operation in electric 
mode and hybrid mode, corresponding to normal, routine voyages 
between the Norwegian fjords, is analysed more carefully. Under 
these circumstances the thrusters do not work together at full 
power in the continuous work regime. Thrusters can either work 

No Name of device Power 
[kW] Switchboard Estimated 

load [kW]
Simultaneity load factor / 

degree of power source use

Loads active during the sea trials

1 HP-1 Aers Central Heat/Cool System 43.0 AC 690V/50Hz FWD 16.0 0.37

2 Steering, Cooling, SW Circulation, LO Transfer  
and Fuel Oil Pumps 53.0 AC 690V/50Hz FWD 32.0 0.60

3 HP-2 Aers Central Heat/Cool System 43.9 AC 690V/50Hz AFT 13.5 0.31

4 Provision Cooling Plant 1 1.5 AC 690V/50Hz AFT 1.5 1.00

5 Lighting, navigation and hotel load (superstructure load) ≤60.0 AC 230V/50Hz 48.0 0.80

6 CP1/2/3-Fans 17.1 AC 230V/50Hz 9.0 0.53

7 Thruster FWD 960.0 DC 1000V FWD 528.0 0.55

8 Thruster AFT 960.0 DC 1000V AFT 432.0 0.45

Other Loads

9 Bilge Pump 1 11.0 AC 690V/50Hz FWD NA* NA

10 Fire Bilge Pump 1 43.6 AC 690V/50Hz FWD NA NA

11 Fire Pump 1 30.0 AC 690V/50Hz FWD NA NA

12 Deluge Pump 160.0 AC 690V/50Hz FWD NA NA

13 MOB Davit 10.2 AC 690V/50Hz FWD NA NA

14 Watermist Pump 1 22.0 AC 690V/50Hz FWD NA NA

15 Deck Foam System 13.2 AC 690V/50Hz FWD NA NA

16 HPU Pump 1 30.0 AC 690V/50Hz FWD NA NA

17 HPU Pump 2 30.0 AC 690V/50Hz FWD NA NA

18 Provision Cooling Plant 2 1.5 AC 690V/50Hz FWD NA NA

19 Deck Washing Pump 5.5 AC 690V/50Hz FWD NA NA

20 Bilge Pump 2 11.0 AC 690V/50Hz AFT NA NA

21 Fire Bilge Pump 2 43.6 AC 690V/50Hz AFT NA NA

22 Fire Pump 1 30.0 AC 690V/50Hz AFT NA NA

23 Watermist Pump 2 22.0 AC 690V/50Hz AFT NA NA

24 Black Water Pump, Hydrophore Pumps, Oily Bilge Pumps, Grey 
Water Pump, SW Circulation 2, Cooling 2 and Transfer Pumps 18.5 AC 230V/50Hz NA NA

*NA - not applicable, loads out of the work during the sea trials

Sources of power active during the sea trials

1 DG1 489 kVA / 
440 kW AC 690V/50Hz FWD 388.0 0.88

2 DG2 489 kVA / 
440 kW AC 690V/50Hz AFT 388.0 0.88

3 Battery 1 565 kWh DC 1000V FWD 260.0 ** 0.46 ***

4 Battery 2 565 kWh DC 1000V AFT 260.0 0.46 

**   - Power necessary to complete an energy balance during the sea trials
*** - Degree of power source use estimated for 1h of the sea trials

Tab. 2. Specifications of the loads and sources of energy for the analysed ferry’s electrical power system
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individually or in sequence, e.g. at 55% (first thruster) and 45% 
(second thruster) of the load, i.e. a total  thrusters’ power of 960 kW. 
During the sea trials, the remaining load of the system listed in 
positions 1-6, was about 120 kW. This means that the total sum of the 
load of the system was 1080 kW, taking into account the simultaneity 
coefficients for the thrusters and remaining loads shown in Table 2, 
listed in positions 1-8. At the same time, the related sources of 
power active during the sea trials corresponded to 776 kW (DGs) 
and 520 kWh (batteries). Some of the simultaneity load coefficient 
and degrees of power source values shown in Table 2 have been 
determined on the basis of the shipyards’ ferry documentation and 
the sea-going practice experience of the authors. It was assumed that 
the sea trials combinations of loads and power sources corresponded 
to the routine, regular conditions of shipping planned between two 
Norwegian fjords. Therefore, the operating conditions assumed 
the estimated values of the load coefficients and degrees of power 
sources used, as well as a very specific regime of ferry operation, 
i.e. a vessel operating a 15 minute crossing of the Norway fiords, 
26 times in a normal day, where a single crossing distance is 
3 km. It is, therefore, possible to achieve an energy balance in the 
analysed electrical power system. This balance was achieved in all 
possible modes of operation of the ferry by implementing energy 
management recommendations. These recommendations focused 
on improving energy efficiency, analysing and implementing 
appropriate operational maintenance of the batteries, and analysing 
and verifying all required functionalities in all modes of operation 
of the ferry.

The lifetime and reliability of the batteries are crucial for 
realising the recommendations. These recommendations were 
formulated by the batteries’ manufacturer and the ship’s designers. 
The lifetime of the installed batteries is closely related to the number 
of charge and discharge cycles. Batteries must operate within their 
optimal discharge and charge limits. Table 3 presents the essential 
parameters (and their values) for energy storage systems (ESSs) for 
the optimisation of fuel consumption and safety.

Figure 2 provides the planned operational profile of the ship 
sailing during very bad weather conditions (changing SoC from 
70% to 56%). Based on this plan (Fig. 2) and agreements with 
the shipowner, suitable ESS parameters were selected (Table 3) to 
ensure the proper operation of the thruster supplied by the hybrid 
power system. Detailed data concerning battery exploitation 
are described by the energy and power management system 
(EPMS), which allows for the monitoring and control of power 
flow, battery charge levels, charge and discharge limits, and 
coordination with the SSs and shore chargers (Fig. 1b).

Tab. 3. Recommended parameters of battery-powered systems

ESS parameters Unit Value

Battery capacity [kWh] 565

Setpoint: Low Low Level [kWh] 190

Setpoint: Low Level [kWh] 225

Take-me-home (return to nearest port) [kWh] 35

SoC after sailing [%] 56

SoC after charging [%] 70

Setpoint: Low safe level limit
[kWh] 14

[%] 2.5

Fig. 2. Planned operational profile of sailing for the studied ferry: red line  
indicates change of SoC ESS, blue columns represent available high power  

DC-plug from the built shore infrastructure

In the case of a low-level alarm (indicating a low level of 
available energy from the batteries), the diesel generator (DG) 
starts automatically and, in the case of a low low-level alarm 
(indicating critically low ESS charge), less critical/important 
devices are automatically shut down. Exceeding the low safe 
level limit can result in permanent damage to the ESS. In 
the case of hybrid mode operation (e.g. navigation to the 
shipyard), the DGs transfer energy to the ESS and, during 
normal navigation in the electric mode (M1), they work as 
an emergency power source. Redundancy is based on the 
previously discussed separation into two ship power systems: 
AFT and FWD. In the case of a failure in one system, there 
is the possibility of full control and operation of the other. 
Redundancy also applies to the integrated automation system 
(IAS), meaning that the control of devices, such as valves, fans, 
and pumps, is divided into two separate and independent parts 
of the system. The ESS has been designed to provide full power 
to both thrusters, while satisfying the superstructure load 
requirements (approximately 60 kW). Additionally, during the 
design phase, considerations were given to the possibility of 
adverse weather conditions, which could result in higher ESS 
loads. The connection to the SS at 230/400 V is realised at the 
AC distribution switchboard at 230 V / 50 Hz. The primary 
role of the SS is to supply the hotel load and additional systems 
when the ship is docked in port or at a quay. There is also the 
possibility of charging the batteries with low power through 
the SS. The SS system also synchronises and verifies the voltage 
phase compatibility between the vessel and the port power 
system.

EXPERIMENTAL VERIFICATION

The examination of the impact of implementing the conditions 
outlined in the Introduction, as solution I, was experimentally 
verified on the basis of the sea trials, which mainly addressed 
electric and hybrid modes of the ferry operation.

Table 4 shows the five possible operational modes of the ferry.
The purpose of the trials was to examine the correct operation 

of the ship’s electrical power system in each of the tested modes 
and to verify the efficiency of the cooperation between the 
battery banks and the associated power generation units for 
optimal power management by the system.

The analysis of the results depends on three operating cases 
of the electrical power system resulting from positions M1 and 
M2, as shown in Table 4. The selected cases, T1, T2 and T3, 
subjected to tests during sea trials, are explained in Table 5. 
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In the first mode, Thruster 1 and Thruster 2 operate with step 
load changes in the range of 20-100% and power is delivered from 
the ESSs, with their initial SoC ranging from 58-59%.

In the next mode, Thruster 1 operates with the load continuously 
changing from 0 to 100%, while DG 1 and 2 provide power to the 
grid and the ESS battery banks charge from the initial state of 49 and 
51% up to 55 and 56% (for each battery set). In the last considered 
mode, T3, there are step changes in the loads of Thruster 1 and 2, 
in the range 20-100%. In this mode, both DG 1 and 2 operate in 
parallel and the ESS battery banks cooperate with the grid.

After exceeding the discharge level threshold, the DGs are 
switched on according to the set priority and their allowed number.

Tab. 5. Modes of operation of the electrical power system verified during the sea trials

Mode 
of 

work
Thruster 1 Thruster 2 DG1 DG2

Ba
tt

er
y 

1

Ba
tt

er
y 

2

T1
Step load 
change 

20...100%

Step load 
change 

20...100%
– – Load Load

T2
Continuous 
load change 

0...100%
– Load Load Hybrid Hybrid

T3
Step load 
change 

20...100%

Step load 
change 

20...100%
Load Load Hybrid Hybrid

An essential part of the energy management process is 
analysing the power management of the thrusters, considering 
the battery charge/discharge process. An example of this 
analysis, conducted for operating mode T3 (described in 
Table 5), is illustrated in Fig. 3.

Fig. 3. Time and current traces of DG 1 and Thruster 1 for the T3 operating mode  
in the context of the energy charging/discharging from the battery packs; 1 - effective  
point of work of DG1, a constant load of the generator unit DG1, 2 - energy delivered  
to the battery, charging of the battery, 3 - energy taken from the battery, an increase  

in the level of available power

The plots in Fig. 3 show the currents when the battery is 
being charged and discharged, while maintaining a constant 
current from generator unit DG1, corresponding to the 
effective operating point of DG1. The battery provides electrical 
energy when increased power is required and it charges (takes 
power from the grid) when the system can operate with less 
available power. The effective DG1 current (dashed red line) is 
set using the ESS manufacturer’s software. It is a result of how 
the battery charging/discharging processes are controlled, as 
defined in the ship’s control system (SoC, charging current 
limit and discharging current limit) and in accordance with the 
previously discussed operational profile of the vessel for various 
conditions. During battery charging from the DG (hybrid 
mode M2), the load capacity of the thrusters is limited until the 
batteries are charged to a level that enables safe operation of the 
system. Fixed-pitch propellers allow economic ship operation 
with a shipping speed of 10 knots. During the sea trials (T3 
mode), the effective point of work of DG1 was established for 
a load less than its nominal value, which was approximately 
88% of the nominal value.

POWER QUALITY ISSUES

Another objective of the study was to determine and 
analyse selected parameters of electrical power quality related 
to voltage and current, in both the DC and AC parts of the 
system and the frequency values in the AC part. This was to 
assess the shape of the voltage and current waveforms and 
to verify whether these parameters were within the limits 
set by the DNV classification guidelines. Maintaining these 
parameters at appropriate levels is crucial for ensuring the 
safety and reliability of maritime systems [21].

The configuration diagram of this power system (Fig. 1b) 
shows that the 1000 V DC bus bars are the main supply for 
this ship. Therefore, appropriate DNV limits and measurement 
results from the tests were compared. The results of this 
comparison are presented in Table 6.

Tab. 4. Five possible modes of operation of the ferry
Operating modes

No Name Source of power Description of the system operation

M1* (T1) Electric mode ESS Normal operating mode: AC 690 V / 50 Hz and AC 230 V / 50 Hz distribution  
boards are powered by a converter from DC 1000 V.

M2* (T2/T3) Hybrid mode ESS & DG
Mode used during extended voyages: depending on current power needs, generators provide 

propulsion requirements and extra energy is transferred to the batteries (charging of battery). With an 
increased power demand, the batteries release/transfer power to the grid, known as „peakshaving”.

M3 Diesel–
electric mode DG Emergency operation mode: DG supplies AC 690 V / 50 Hz, AC 230 V / 50 Hz distribution 

boards, and thrusters through DC 1000 V.

M4 Shore mode Shore grid Supply via SS: the possibility of charging ESS with low power;  
normal battery-charging mode at night.

M5 Charging 
mode Shore grid High-power charging from shore: the ability to charge the battery  

banks quickly during a few-minute stop in port.

* under consideration in this study
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Tab. 6. Comparison of the DNV voltage limits and test results  
for electric DC battery-powered systems

Indexes of power quality DNV voltage 
limits

Ship tested

Measurement 
results

Mode 
of tests

δUdev Voltage deviation in 
equipment connected to 
battery during charging

+30 to −25% −11.90%
−10.90%

T2
T3

δUdev Voltage deviation in 
equipment connected to the 

battery not being charged
+20 to −25% −13.70% T1

δUvar Voltage cyclic variation max 5%
4.07%
4.12%
4.07%

T1
T2
T3

δUrip Voltage ripple max 10% <<10.00%* T1, T2 
and T3

*did not observe considerable voltage ripples

The measurement results in Table 6 are illustrated in Figs. 4 and 5.

Fig. 4. Changes in the UDC voltage on main bus bar FWD 1000 V for  
different modes of operation of the hybrid thruster power supply system:  

T1 - red line, T2 - blue line, T3 - green line

Examples of voltage cyclic variations (δUvar) are shown in Fig. 5.

Fig. 5. Voltage cyclic variation (δUvar) based on the measurements  
in the FWD DRIVE SWDB 1000 V (channel 6) for the different modes  

of operation: a) T1, b) T2 and c) T3

Examples of the cyclic voltage variations (δUvar) in DC 
voltage, within the range of 0.2 s, are illustrated in Fig. 5. We 
also determined the highest observed values of the δUvar (%) 
parameter obtained during full-time recording for the T1, T2 
and T3 modes of operation. Calculations of the δUvar values 
were carried out based on the relative instantaneous difference 
in UDC voltage values from the average.

The maximum δUvar was 4.12% (for T2 mode) and values 
of this index complied with the DNV standards for all of the 
regimes (T1, T2 and T3).

The experiments on voltage limits, as well as the analysis of 
the supply voltage parameters characterising the related DC 
network presented in Table 6 and Figs. 4 and 5, confirmed that 
all the requirements set by the DNV classification limits were 
met by a significant margin. The results were used to receive 
the appropriate DNV certificate for this passenger-car ferry.

In addition to the research on the 1000 V DC network, 
regarding voltage limits following DNV standards, experiments 
were carried out for AC voltage limits at 690 V / 50 Hz. The 
results of these experiments are presented in Table 7.

Tab. 7. Comparison of the DNV voltage limits and test results  
for electric AC-powered systems

Analysed parameters DNV limits Measurement 
results

Test 
modes

δUdev, Voltage deviation - Steady state

Deviation of nominal AC 
system voltage for main 

power distribution
±2.5% <0.19% T2 and T3

Deviation of nominal 
AC system voltage 

for emergency power 
distribution

±3.5% – T2 and T3

δUdev, Voltage deviation - Transient state

Deviation of nominal AC 
voltage

from  
−15 to +20% <0.35% T2 and T3

δfdev, Frequency deviation

Deviation of nominal 
frequency of AC voltage:
- under steady state load

- under transient load
±5%

±10%
<0.24%
<0.6%

T3
T2

Voltage harmonic distortion

THDu 8% <4.5% T2 and T3

All of the results in Table 7 complied with the DNV classification 
requirements.

The research scope not only included the acceptable voltage 
DC and AC deviations from their reference values, but also the 
acceptable levels of higher voltages and current harmonics in 
the ship’s electrical power system (690 V AC, inverter supplying 
the thruster).

Research on the variability of current distortion factors has 
been performed using measured factors: Subgroup total harmonic 
distortion (THDS), Subgroup total waveform distortion (TWDS) 
and Subgroup total interharmonic distortion (TIHDS) [22,23]. 
These are more demanding criteria than the traditional THD 
factor, as included in [18]. These factors, based on [23], were 
determined for frequency spectra up to the 100th harmonic.

Figure 6 shows waveforms of the changes in TWDS and 
THDS distortions of the I1 current of Thruster 1, as a function 
of time during various system operation modes.
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Fig. 6. Selected courses of changes in TWDS and THDS current distortion  
coefficients for the I1 current of Thruster 1 and its root mean square (RMS)  
values for different modes of operation; 1 - Transient state values, 2 - Steady  
state values: T1 - energy delivered from the battery (a), T2 - continuous load  

change of Thruster 1 (b), T3 - step load change of the Thruster 1 (c)

Figure 6 shows the courses carried out for the T1, T2 and T3 
modes and additionally scaled (T1) to the full power of the DC/
AC converter, which was dependent on the switching on power 
procedure during sea trials realisation. The applied inverter was 
constructed as a switchable device with two symmetrical power 
levels [24].

The TWDS values are higher than the THDS values at the same 
moments of time because of their definitions, except for the higher 
harmonics and other components distorting the signals, such as 
inter-harmonics. Higher TWDS values were mainly observed in 
the transient states of the thruster rpm control, which is connected 
with related step load changes. By contrast, in the steady state, 
they tend towards values similar to the THDS coefficient (Fig. 6a, 
6b, and 6c). The analysed TWDS values should be considered at 
the ship-design stage, in reference to the selection of the related 
power-supplying cable cross sections. The operation in T1 mode 
permits a larger thruster load than in T2 and T3 modes. In T2 and 
T3, the battery charging process limits the available power of the 
cooperating generators, which are started and switched on to charge 
the battery. The course differences in RMS values of the current 
(shown in Fig. 6) result from the different characteristics of the 
set load (battery mode, continuous or step load) and the manual 
value-setting procedure. Additionally, ship operation under the 
T1 mode (energy delivered from the battery) resulted in a local 
reduction in the ship’s environmental impact, as manifested by 
noiselessness, a lack of vibrations and CO2 emission-free navigation. 

This effect also concerns the T3 mode but to a lesser degree, 
because the sources of power are environmentally friendly ESS 
and DG, as complementary options. The thruster is controlled 
with step load changes, which is an advantageous option from an 
environmental point of view. The discussed effect does not apply 
to the T2 mode, where sources of power are mainly DGs, and the 
thruster is controlled with continuous load changes, which have 
more harmful influences on the local environment.

The THDS, TWDS and TIHDS coefficient results characterising 
the current supply of the thruster (Thruster 1) motor are presented in 
Table 8. These data are steady-state values for the maximal thruster 
load.

Tab. 8. Comparison of the current limit requirements from the classifying  
institutions and test results for the DC battery power systems on the AC  

side of the inverter installed on the Thruster 1 line

Indexes of 
power quality 

from [21]

DNV current 
harmonic 

limits

I1 current 
measurement results 

for the ship [%]
Mode of test

THDS
Not 

applicable

1.90

T1TWDS 2.96

TIHDS 1.86

THDS
Not 

applicable

2.07

T2TWDS 2.89

TIHDS 1.70

THDS
Not 

applicable

1.96

T3TWDS 2.99

TIHDS 1.86

The measured I2 and I3 current results for Thruster 1 are 
approximately the same as the values for the I1 current.

Due to the lack of appropriate DNV standards regarding the 
limitation of emission of harmonic current in thruster power supply 
systems, the power quality criteria for THDS and TWDS for the 
I1 thruster current were examined with reference to the PN/IEC 
61000-3-4 standard. This standard addresses the “limitation of 
emission of harmonic current in low-voltage power supply systems 
for equipment with rated currents greater than 16 A” [25].

Although this standard could be helpful, due to its scope, a rough 
analysis showed that, unfortunately, this standard only covers 
devices with a rated current limited to 75 A. Next, for equipment 
exceeding 75 A, as the input current per phase, it has been stated: 
“… the supply authority may accept the connection of the equipment 
on the basis of the agreed active power of the consumer’s installation. 
The local requirements of the power supply authority apply in this 
case”. Taking into account the fact that the analysed passenger-car 
ferry, classified under DNV rules, successfully began operation 
on February 2021 [16], this means that all technical conditions for 
regular shipping, including power quality conditions, were fulfilled 
and accepted by the ferry operator.

CONCLUSIONS AND RECOMMENDATIONS

•  According to the theoretical analysis, and based on the 
experimental results for improving a ship’s energy efficiency 
using existing energy efficiency measures (primarily the 
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EEDI), the limitation of CO2 emissions in this case study was 
realised, based on increases in the ‘D’ and ‘E’ components in 
Eq. (1) with the application of innovative technologies. These 
innovative technologies concern solutions for minimising 
energy consumption, which are expressed by the solutions 
outlined in the Introduction I, II and III and related to the 
reduction of the demand for the ship’s electrical energy 
(component D in Eq. (1)). These also include the solutions 
IV, V and VI, leading to minimising ship hull friction and 
reducing its resistance to water, related to the increase of the 
value of the product DWT × Vref, which is the transport work 
of the ship (component E in Eq. (1)).

•  In the analysed system, energy consumption was minimised 
by implementing solutions, such as an appropriately controlled 
power supply of battery packs, in combination with generator 
sets. This was partly achieved by selecting a fixed efficient 
generator operation mode (Fig. 3), using energy-efficient 
lighting and power supply systems of selected devices, such 
as propulsion drives, ventilation and air conditioning systems 
controlled by power electronic converters.

•  The implementation of the solutions given above and adaptation 
of the operating modes of the ship’s power system to current 
operational needs (based on the strategy from the shipbuilder and 
Norwegian ferry operator), provided a considerable improvement 
in the vessel’s energy balance, while reducing fuel consumption 
and CO2 emissions.

•  This operation, which assumes that the passenger-car ferry is 
dedicated to inland shipping and crossing between Norwegian 
fiords, is achieved using energy from a battery system that is 
charged during port stays, requiring an appropriate schedule 
of ship operation. This schedule (Table 4 and Table 5) has been 
successfully tested during sea trials, especially regarding the 
electric and hybrid mode functionalities. The study confirmed 
the functionality and effectiveness of powering the ferry’s 
thrusters using the hybrid battery system, combined with 
generator units, for effective power management in the system 
and minimising energy consumption.

•  The improved energy balance, in this case, was possible due 
to appropriately supplied thrusters, many other specific load 
controls and operations (Table 2) and an appropriately designed 
simultaneity factor for the loads and degree of power source use. 
Special attention was paid to the energy balance analysis during 
the sea trials, which corresponded to the routine operation of 
the ferry.

•  The energy balance was determined in all possible modes of 
operation for the ferry (Table 4) in combination with energy 
management recommendations, which are based on the 
verification of all required functionalities in all operation modes. 
The authors also used the energy management guidelines within 
the range of appropriate operational maintenance of batteries 
(Table 3), in combination with the ESS characteristics and the 
operational shipping profile (Fig. 2).

•  One very important component for the successful realisation 
of energy management, besides the appropriate choice of 
the operation mode of the analysed system (Table 4), is the 
experimental verification of the related design assumptions. 
The test results are consistent with the ship’s design assumptions 

and confirmed the ability to achieve fuel savings and reduce 
CO2 emissions. Moreover, it has been shown that the influence 
of the ferry operation on the local environment mainly 
depends on the characteristics of the load changes and the 
mode of the ferry operation. The most advantageous option 
is connected with the step load changes and the operation 
mode supplied by batteries, T1. Under these conditions a local 
reduction in the ship’s environmental impact, as manifested 
by noiselessness, a lack of vibrations and CO2 emission–free 
navigation, will occur.

•  The experimental verification of the improvements in 
ship energy due to the application of a hybrid thruster 
power supply system considered the variables mentioned 
above, including the energy balance and management 
combined with power quality issues. Although the 
primary concern for a shipbuilder and operator is energy 
saving, checking whether the power quality parameters 
are complying with the classification standards is also 
important and should be required. The checked power 
quality parameters for 1000  V DC network cover are:  
δUdev <−10.90%, −13.70%>, δUvar <4.07%, 4.12%>,  
δUrip <<10%, and for 690 V AC network: δUdev <0.19% (steady 
state), δUdev < 0.35% (transient state), δfdev< 0.24% (steady 
state), δfdev < 0.6% (transient state), and THDu < 4.5%. All 
of the analysed parameters characterising power quality in 
the 1000 V DC and 690 V AC networks fully comply with 
the mandatory requirements of the classification standards.

•  Additionally, some power quality parameters, related to the 
thruster current on the AC side of the inverter, were tested 
in this case study and the following results were obtained:  
THDS < 1.90%, 2.07% >, TWDS < 2.89%, 2.99% > and 
TIHDS < 1.70%, 1.86% >. Taking into account the fact that 
the presented data are steady-state values for the maximal 
thruster load, these values are acceptable from a practical 
operating point of view. However, this analysis was outside 
the IEC standards.

•  In summary, the detailed conclusions and findings regarding 
the experimental verification for improving the ship’s energy 
with the application of a hybrid thruster power supply system 
are:

–  Hybrid power supply systems for thrusters enable 
efficient load compensation, resulting in fuel savings and 
a reduction in CO2 emissions.

–  Hybrid systems, along with the operational profile, 
increase the vessel’s operational safety because the energy 
from battery packs can provide a stable power source and 
immediate backup power in the case of DG failures. This 
design approach for ship power systems is necessary and 
recommended for use in the future.

–  In this analysed system, the DG worked successfully at 
an optimal, fixed point of work with a constant load of its 
generator, which also reduced emissions.

–  The installed battery system allows their charging using 
shore power and replacing with DGs during stays at the 
port. Consequently, this provides a local reduction in the 
ship’s environmental impact when operating in battery 
mode.
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–  The advantages described above were achieved due to 
the innovative application of the thruster supplied by the 
hybrid power system without altering the power quality 
requirements of the analysed system.
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LIST OF ABBREVIATIONS

AC – Alternating Current
AFT – After part of vessel
CII – Carbon Intensity Indicator
CNG – Compressed Natural Gas
DC – Direct Current
DG – Diesel Generator unit
DNV – Det Norske Veritas
DWT – Deadweight Tonnage of the Ship
EEDI – Energy Efficiency Design Index
EEOI – Energy Efficiency Existing Ship Index
EEOI – Energy Efficiency Operational Indicator
EPMS – Energy and Power Management Ship
ESS – Energy Storage System
FWD – Forward part of vessel
GHG – Greenhouse Gas Emission (from Ship)
GT – Gross Tonnage of the Ship
IEC – International Electrotechnical Commission
IGBT – Insulated-Gate Bipolar Transistor
IMO – International Maritime Organization
LED – Light Emitting Diode
LEM – Life Energy Motion
LNG – Liquefied Natural Gas
M – Motor
MARPOL –  The International Convention for Prevention of 

Pollution from Ships
MEPC –  Marine Environmental Protection Committee
PEM – Power Electronic Measurements
PWM – Pulse Width Modulation
RMS – Root-Mean-Square (value)
RPM – Revolutions per minute
SFC – Specific Fuel Consumption
SoC – State of Charge
SS – Shore Supply
SWBD – Switchboard
THD – Total Harmonic Distortion
THDS – Subgroup Total Harmonic Distortion
TIHDS – Subgroup Total Interharmonic Distortion
TWDS – Subgroup Total Waveform Distortion
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AbstrAct

Despite the fact that there is an existing body of literature addressing the computation of Coupling Loss Factors (CLFs) 
via the Finite Element Method (FEM), no publications have sufficiently taken into account real structural joints in 
their approach. Previous research has focused on academic cases of trivial connections, rarely involving more than 
two steel plates. To enable Statistical Energy Analysis (SEA) on a real ship, a methodology for determining CLFs for 
non-trivial systems is proposed, considering realistic boundary conditions and irregularities that can occur in marine 
structures. Based on the method, a library of CLFs is created by selecting the tested connections to enable modelling 
of about 90% of the acoustic paths on an existing jack-up vessel. Boundary conditions were set by introducing spring 
elements with a stiffness calibrated to the type of connection and taking the adjacent structure into account. In 
previous works, CLFs were determined for basic connections of rectangular plates. The lack of scantling variations, 
ignoring discontinuities and only defining parallel edges in the considered models, lead to the overestimation of energy 
transmission in real structures. To consider the influence of the above, random deviations from the initial stiffness of 
the springs at individual edges and point restraints at random points are introduced in this paper.  

Keywords: Statistical Energy Analysis, Power Injection Method, Finite Element Method, Coupling Loss Factor

INTRODUCTION

Passenger ships, commercial ships and specialised 
vessels are treated as ordinary workplaces, with respect 
to vibroacoustic conditions, although they have their own 
unique character, being places of both professional and leisure 
activities [1]. For their health, it is important to reduce the 
levels of daily noise and vibration to which they are exposed. 
To do this, one has to be able to predict the transmission 
of vibroacoustic energy at the design stage. Energy-based 
modelling approaches are often used to describe the higher 
frequency vibrational behaviour of complex systems in some 
average, statistical or approximate way. The most important 
of these methods is statistical energy analysis (SEA). At low 

frequencies, the finite element method (FEM) is used. This 
article focuses on determining coupling loss factors (CLF) for 
real-world structural connections in the medium and high 
frequencies (octaves 63-2000 Hz). CLFs are key parameters 
for SEA; they describe the energy transmission between 
connected subsystems.

BASICS OF SEA

SEA involves the prediction of the vibration response 
of a complex structure by dividing it into subsystems and 
determining the average energy. The transmission of vibration 
energy between subsystems is characterised by damping 
loss factors (DLF) and coupling loss factors (CLF). The DLF 

https://orcid.org/0000-0002-8191-7843
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corresponds to the damping in the subsystem itself and the 
CLF corresponds to the energy dissipation at the subsystem 
connections. The CLFs and the DLFs form a  matrix of 
coefficients in the energy balance equation, which is used to 
calculate the energy of subsystems when the input powers are 
known. The CLFs can be obtained using an analytical wave 
approach for several types of junctions of semi-infinite plates. 
An alternative is the power injection method (PIM), which 
is an approach in which the CLF values can be obtained by 
measuring subsystem energy and power input [2].

The fundamental relationship, on which the SEA and PIM 
is based, is the balance between the input power and the 
output power of the subsystem (a part of the whole system 
e.g. a single wall). For the i-th subsystem, this equation has 
the following form:
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Fig. 1. Scheme of energy exchange in the SEA system 
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The power injection method (sometimes called the experimental SEA or ESEA) 
involves exciting successive subsystems one by one with known power, measuring the total 
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The power injection method (sometimes called the 
experimental SEA or ESEA) involves exciting successive 
subsystems one by one with known power, measuring the 
total energies of the subsystems, and filling in the energy and 
power matrix. After inverting the energy matrix, a matrix of 
coefficients is obtained, according to the equation:

 

 

energies of the subsystems, and filling in the energy and power matrix. After inverting the 
energy matrix, a matrix of coefficients is obtained, according to the equation: 

   

𝜔𝜔 |
𝜂𝜂𝑖𝑖 + ∑ 𝜂𝜂1𝑖𝑖𝑁𝑁

𝑖𝑖≠1 ⋯ −𝜂𝜂1𝑁𝑁
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−𝜂𝜂𝑁𝑁1 ⋯ 𝜂𝜂𝑁𝑁 + ∑ 𝜂𝜂𝑁𝑁𝑖𝑖𝑁𝑁−1
𝑖𝑖≠𝑁𝑁

| = |
𝑃𝑃1 ⋯ 0
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 In practice, both the total energy and input power values are difficult to obtain and are 

potential sources of inaccuracy. Moreover, creating a classic laboratory measuring system is 
costly and time-consuming. Therefore, methods using FEM are developed in parallel to 
experimental research. 

 
STATE OF THE ART   
 

The basics of both SEA and PIM are well described in the literature and yet some of 
their practical aspects remain challenging.  
 

Le Bot and Cotoni [3] created validity diagrams of the SEA and described its 
assumptions in detail. The possibility of using PIM was indicated by Lyon as early as 1975 [4]. 
Laboratory experiments using this method have been described many times [5-7]. Due to the 
difficulty of controlling the input power and obtaining the energy of the subsystems, as well as 
the cost of both the measurement system and the test object, all of these tests were carried out 
for trivial systems. Numerical methods, in the form of a finite element method, became the next 
step in the development of PIM.   

Pankaj et al. [8] described a method to carry out PIM using FEM. The expected results 
were obtained for an L-type connection for discrete frequencies. For SEA to be useful in 
industry, the coefficients must be averaged over the frequency domain. Only the simplest 
system was tested, i.e. two identical perpendicular plates. In a precisely uniform rectangular 
plate, the waves generated within the source plate propagate consistently along fixed paths, 
exhibiting no dispersion to alternate positions as they travel towards the receiving plate. This 
characteristic behaviour arises due to the absence of internal discontinuities and parallel sides. 
Such situations rarely occur in real structures. Even in ships built of repetitive structures, there 
are scantling variations, discontinuities and non-parallel edges. As a result, an irregular system 
has a smaller overall energy transmission than a regular system.   

An interesting approach to estimating CLFs was presented by Thite and Mace [9], who 
proposed to randomise the properties of the system being analysed and average the resulting 
estimates but without repeating the full FEA. This allows for very computationally cheap results 
but is difficult to use in shipbuilding practice. The authors relied on the assumption that 
“response statistics are somewhat independent of detailed physical variables if the variability is 
'large enough'”. Unfortunately, in the case of ship’s structures, the variability of physical 
properties is often not large enough, considering the criteria they adopt.  

Poblet-Puig [10] developed a strategy to solve the problem of negative CLF values, 
which are sometimes obtained from Eq. (8). In the case of the structures considered in this 
article (due to their size), negative CLFs are rare and the proposed averaging technique allows 
them to be ignored. 

There are also numerous publications on vibroacoustic transmission that use techniques 
other than PIM. Shorter and Langley [11] proposed a general method for predicting the 
ensemble average steady-state response of vibroacoustic systems. The authors not only decided 
not to recure to PIM, but bypassed the basic assumptions of SEA as well, concerning the 
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using FEM. The expected results were obtained for an L-type 
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plate, the waves generated within the source plate propagate 



POLISH MARITIME RESEARCH, No 1/2024 57

consistently along fixed paths, exhibiting no dispersion to 
alternate positions as they travel towards the receiving plate. 
This characteristic behaviour arises due to the absence of 
internal discontinuities and parallel sides. Such situations 
rarely occur in real structures. Even in ships built of repetitive 
structures, there are scantling variations, discontinuities 
and non-parallel edges. As a result, an irregular system has 
a smaller overall energy transmission than a regular system.

An interesting approach to estimating CLFs was presented 
by Thite and Mace [9], who proposed to randomise the 
properties of the system being analysed and average the 
resulting estimates but without repeating the full FEA. 
This allows for very computationally cheap results but is 
difficult to use in shipbuilding practice. The authors relied 
on the assumption that “response statistics are somewhat 
independent of detailed physical variables if the variability is 
‘large enough’”. Unfortunately, in the case of ship’s structures, 
the variability of physical properties is often not large enough, 
considering the criteria they adopt.

Poblet-Puig [10] developed a strategy to solve the problem 
of negative CLF values, which are sometimes obtained from 
Eq. (8). In the case of the structures considered in this article 
(due to their size), negative CLFs are rare and the proposed 
averaging technique allows them to be ignored.

There are also numerous publications on vibroacoustic 
transmission that use techniques other than PIM. Shorter 
and Langley [11] proposed a general method for predicting 
the ensemble average steady-state response of vibroacoustic 
systems. The authors not only decided not to recure to PIM, 
but bypassed the basic assumptions of SEA as well, concerning 
the strength of the coupling between the subsystems, the 
nature of the excitation, or the resonant nature of the response. 
Their approach also yielded ‘indirect’ CLFs (CLFs between 
statistical subsystems that are not physically adjacent).

Attempts to include stiffened plates in the framework of 
Statistical Energy Analysis have led to the creation of a new 
branch of SEA development, in which subsystems are treated 
as periodic structures. Yin and Hopkins [12] described the 
combination of Bloch theory and wave theory, while Pany 
[13] presented the combination of FEM with Floquet’s theory. 
The asymmetrical stiffeners found in shipbuilding were 
not taken into account in any of these cases. The methods 
mentioned, ingenious as they are in some theoretical respects, 
remain insufficient for grasping the complexity of typical 
ship structures, featuring asymmetries, stiffeners and 
discontinuities.

Using these methods can be helpful but they are insufficient 
for ship construction, specifically.

The original contributions of the present research are:
•	 A library of SEA parameters is created for the structural 

joints of a jack-up vessel; by using this library, one can 
create many SEA models of vibroacoustic paths on various 
ships.

•	 The well-described PIM method is modified to easily reject 
negative CLFs with a minimal impact on the final result. 
The coefficients are averaged, both in the frequency domain 
and for various boundary conditions.

•	 A	method	of	setting	boundary	conditions	is	proposed	to	
take	into	account	the	influence	of	the	adjacent	structure	
and	internal	discontinuities.

NUMERICAL EXPERIMENTS

The selecTion of sTrucTural 
connecTions

The structural connections shown in this article are parts 
of an existing jack-up vessel. They were selected based on 
the possibility of carrying out an SEA analysis for this unit. 
Using these specific cases, real vibroacoustic transmission 
paths can be modelled for many ships. Structural elements 
were ‘cut out’ from a global FEM model created for strength 
analyses. The global model is shown in Fig. 2. The mesh of 
finite elements was refined to meet the condition λ>7l for 
the selected submodels, where λ is the wavelength and l is 
the element length. This condition was introduced to make 
sure that the flexural wave was mapped correctly.

Fig. 2. Global FEM model of jack-up vessel

The numbering convention shown in Fig. 3 was adopted 
during the calculation and presentation of results. The figure 
shows an X-type junction; in the case of a T-type junction, 
the system only consists of subsystems 1, 2 and 3.

Fig. 3. The numbering convention of subsystems
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A typical stiffener spacing of 685 mm was defined in each 
subsystem. All of the tested systems were made of mild steel 
and the following material properties were assumed globally: 
density ρ= 7850 kg/m3, Poisson’s ratio ν=0.3, Young’s modulus 
E=205GPa, and internal damping η=0.04. It was assumed that 
the value of internal damping is constant and independent 
from frequency. The assumed value is in the range of values 
where the DLF had practically no effect on the CLFs of the 
tested systems. Individual systems are characterised by the 
following values: connection length (Ly), length of the first 
(Lz), second (Lx), third (Lz') and fourth (Lx') subsystem, as 
well as the thickness of the plating of individual subsystems 
and types of stiffeners. A description of each tested system 
is provided in Appendix A.

THE FINITE ELEMENTS

A vibroacoustic computation using FEM was carried out 
with Ansys software. SHELL181 elements were used to model 
plates and BEAM188 elements were used to model stiffeners. 
SHELL181 is a four-node element with six degrees of freedom 
at each node. A BEAM188 element is suitable for analysing 
slender to moderately stubby/thick beam structures, based on 
Timoshenko beam theory, which includes shear-deformation 
effects. Combin14 elements were used as springs on the edges 
of the submodels.

INPUT POWER AND SUBSYSTEM ENERGY

The outputs obtained from the numerical simulations are 
the energy and the input power. Energy associated with the 
out-of-plane vibrations were computed as:
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where F is the vector of the point force and v is the vector 
of the velocity at the application spot in the force direction.

LOADS AND BOUNDARY CONDITIONS

Forces were applied to 100 random nodes, at random 
phases (but at a constant amplitude), to implement a ‘rain 
on the roof ’ type of load. A new set of random loads was 
generated for each harmonic solution.

Six springs were attached to each edge node and each 
of them acted on only one degree of freedom. This made it 

possible to control individual degrees of freedom. The spring 
stiffness was calibrated as follows:
•	 The examined intersection was ‘cut out’ from the global 

FEM model, along with the adjacent part of the structure, 
so that the submodel ended with a primary stiffening 
member.

•	 A concentrated force was applied to the joint and the 
result of the static analysis was obtained in the form of 
displacements.

•	 The attached structure was removed from the submodel, 
springs were created and their stiffnesses were iteratively 
selected to obtain the same displacements.
For each run of harmonic analysis, 1, 2 or 3 nodes were 

randomly selected and some of their degrees of freedom were 
fixed (i.e. locked from translation or translation and rotation). 
In the rest of this article, such restraints will be called single 
point constraints (SPC).

THE COMPUTATIONAL WORKFLOW

The entire procedure was programmed in Ansys Parametric 
Design Language (APDL) and the procedure was as follows:
•	 Each octave (or third) was represented by seven discrete 

frequencies.
•	 N harmonic analyses were performed for each frequency, 

where N is the number of subsystems.
•	 For each harmonic analysis, the ‘rain on the roof ’ load 

on the subsequent subsystem was applied and specific 
boundary conditions were generated. After each harmonic 
analysis, the matrices from Eq. (6) were filled in.

•	 After calculating the CLFs for each frequency, averaging 
was performed for the entire band. Negative CLFs were 
not taken into account.

•	 After calculating the CLFs for all octaves, the boundary 
condition settings were changed and the next iteration took 
place. The final result was an average of seven iterations.

VALIDATION METHOD

The method was validated in two ways: by comparing the 
CLFs with measurements performed by Treszkai et al. [7] and 
by comparing energy level differences with measurements 
made by Yin and Hopkins [12]. In the first case, two steel 
plates without stiffeners (junction #1) were tested while, in the 
second case, two periodically ribbed Perspex plates (junction 
#2) were tested. The scheme of the stiffened plates is shown in 
Fig. 4. The material properties used in both cases are given in 
Table 1 and the geometrical details are presented in Table 2.

Fig. 4. Periodic ribbed plates scheme. These types of stiffeners were only used 
for the purposes of comparison with work [12].
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Tab. 1. Material properties of the L-junction plates

Junction Plate Material
Young’s 
modulus 

[Pa]

Density 
[kg/m3]

Poisson’s 
ratio [-]

Internal 
loss factor 

[-]

#1
1 Steel 2.05E+11 7850 0.3 0.04

2 Steel 2.05E+11 7850 0.3 0.04

#2
1 Perspex 4.63E+09 1220 0.3 0.06

2 Perspex 4.63E+09 1220 0.3 0.06

Tab. 2. Geometrical description of plates

Junction Plate
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#1
1 N/A 2 N/A N/A N/A

2 N/A 2 N/A N/A N/A

#2
1 Perpendicular 10 200 10 60

2 Parallel 10 100 10 60

RESULTS AND DISCUSSION

VALIDATION

Fig. 5 shows the minimum and maximum values of the 
CLFs (measured experimentally), FEM/SEA results with 
a 95% confidence interval and analytically calculated values, 
based on wave theory for junction #1. The 95% confidence 
intervals were calculated using the Student’s ‘t’ distribution. 

 

 
Fig. 5. Junction #1, comparison between hybrid FEM/SEA results, measurements and wave theory prediction. 

 
The graph in Fig. 5 shows a good consistency between hybrid FEM/SEA measurements. 

As expected, the FEM/SEA values are closer to the maximum measurement results. This could 
be caused by the fact that the FEM model does not take into account weld imperfections. 

The energy level difference (in dB) obtained for junction #2, by hybrid FEM/SEA and 
the measurements in one-third octave bands, are compared in Fig. 6.  Both results are plotted 
with 95% confidence intervals.  
 

 
Fig. 6. Junction #2, comparison between hybrid FEM/SEA results and the measurements. 

 
In general, the results can be considered to be acceptably consistent. As expected, larger 

differences in average values occur in lower frequencies but, in thirds above 300 Hz, the results 
do not differ by more than 2 dB. Discrepancies for some bands may result from several factors. 
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The graph in Fig. 5 shows a good consistency between 
hybrid FEM/SEA measurements. As expected, the FEM/SEA 
values are closer to the maximum measurement results. This 
could be caused by the fact that the FEM model does not take 
into account weld imperfections.

The energy level difference (in dB) obtained for junction 
#2, by hybrid FEM/SEA and the measurements in one-third 
octave bands, are compared in Fig. 6. Both results are plotted 
with 95% confidence intervals.
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Fig. 6. Junction #2, comparison between hybrid FEM/SEA results and the 
measurements.

In general, the results can be considered to be acceptably 
consistent. As expected, larger differences in average values 
occur in lower frequencies but, in thirds above 300 Hz, the 
results do not differ by more than 2 dB. Discrepancies for 
some bands may result from several factors. Firstly, the 
sampling during the measurements was 1 Hz, while the FEM/
SEA result is averaged over seven frequencies for one-third 
octave. The method of excitation was also different; the rain 
on the roof ’ used in FEM simulations is unattainable in the 
conditions of a real experiment, and so point excitations 
were used. During the experiment, the boundary conditions 
did not change. Meanwhile, during the FEM simulation, the 
stiffness of the model edge restraint changed randomly and 
random SPCs appeared. This indicates that the ensemble 
average represents deterministic systems well.

THE INFLUENCE OF THE BOUNDARY CONDITIONS

SEA is used to predict vibration and noise levels at the 
design stage. One should bear in mind that a shipyard-
constructed structure may exhibit variations, compared 
to the documentation. Sometimes, very small changes can 
cause a large impact on the subsystems’ vibration response, 
as shown in Figs. 7-8. Fig. 7 shows how the response of the 
system changes after introducing one more restraint point in 
a random place on each subsystem. At the statistical energy 
analysis stage, the stiffness of the connected structure may 
change and pillars/cutouts may appear. The best solution is 
to average the random spring stiffness and random SPCs. 
If any of these unknowns are eliminated, this part of the 
randomness can be removed from the procedure. In the cases 
described in this paper, the stiffness of the springs at the edges 
of the models was randomly selected in the range 70-130% 
of the mean value.
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Fig, 7. Displacement graph [mm], result of a steady state harmonic analysis 
in an exemplary frequency of 44 Hz, at which the influence of irregularity is 
clearly visible. On the left, there is one single point constraint in a random 

place for each subsystem. On the right, there are two single point constraints in 
a random place for each subsystem.

The scatter of CLF values, for one system with seven 
random boundary conditions, is shown in Fig. 8. 

 

 
Fig. 8. The coupling loss factors for seven boundary conditions and the averaged value 

Fig. 8 shows that a small change in the system can change the CLF value by two orders 
of magnitude. The dispersion of the results significantly decreases above the 250 Hz octave. 
 

CONCLUSIONS 
 

This paper presents a hybrid FEM/SEA method for estimating the CLF for complex 
structural joints found on ships. The results obtained with this method were compared to 
experimental results from two different papers. Acceptably good agreement with the 
measurement results was achieved. The presented method differs from previous solutions in the 
following ways: 
 

• The coefficients are averaged in the frequency domain and for various boundary 
conditions. This allows us to easily reject negative CLFs with minimal impact on the 
final result. 

• By using springs at the edges of the model, the influence of the adjacent structure can 
be taken into account. Random deviations in spring stiffness allow the result to be 
obtained more for the ensemble average than for the deterministic case. 

• Potential structural discontinuities or additional wave-scattering elements (such as 
pillars) are introduced into the system as point restraints in random places in the 
subsystem. 

• If the uncertainty associated with any of the above types of boundary conditions 
disappears, it can be removed from the analysis, making it more deterministic. 
 

Using a hybrid FEM/SEA method, a library of CLFs was created for the structural joints of 
a jack-up vessel (Appendix A). With the help of this library, one can create many SEA models 
of vibroacoustic paths on various ships. The presented method is universal and the library can 
be freely expanded. 
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Fig. 8 shows that a small change in the system can change 
the CLF value by two orders of magnitude. The dispersion of 
the results significantly decreases above the 250 Hz octave.

CONCLUSIONS

This paper presents a  hybrid FEM/SEA method for 
estimating the CLF for complex structural joints found on 
ships. The results obtained with this method were compared 
to experimental results from two different papers. Acceptably 
good agreement with the measurement results was achieved. 
The presented method differs from previous solutions in the 
following ways:
•	 The coefficients are averaged in the frequency domain 

and for various boundary conditions. This allows us to 
easily reject negative CLFs with minimal impact on the 
final result.

•	 By using springs at the edges of the model, the influence of 
the adjacent structure can be taken into account. Random 
deviations in spring stiffness allow the result to be obtained 
more for the ensemble average than for the deterministic 
case.

•	 Potential structural discontinuities or additional wave-
scattering elements (such as pillars) are introduced into 

the system as point restraints in random places in the 
subsystem.

•	 If the uncertainty associated with any of the above types of 
boundary conditions disappears, it can be removed from 
the analysis, making it more deterministic.
Using a hybrid FEM/SEA method, a  library of CLFs 

was created for the structural joints of a  jack-up vessel 
(Appendix A). With the help of this library, one can create 
many SEA models of vibroacoustic paths on various ships. 
The presented method is universal and the library can be 
freely expanded.
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APPENDIX A

Tab. 3 Description of subsystems included in the submodels

 Length [mm] Thickness [mm] Stiffener type

ID Lx Ly Lz Lx' Lz' P1 P2 P3 P4 P1 P2 P3 P4

1 2740 1500 - - - 10 10 - - FB10x100 HP120x6 - -

2 2740 1500 - - - 20 10 - - FB10x100 HP200x9 - -

3 1500 3500 1950 - 1950 8 10 8 - HP120x7 FB10x100 HP120x7 -

4 1500 3500 1950 - 1950 20 10 20 - HP200x9 FB10x100 HP200x9 -

5 1500 2640 1950 - 1950 20 12 20 - HP200x9 FB10x100 HP200x9 -

6 1500 2640 1950 - 1950 8 12 8 - HP120x7 FB10x100 HP120x7 -

7 1500 3500 1950 - 1950 9 10 9 - HP120x6 FB10x100 HP120x6 -

8 1950 2055 3700 - 3100 7 7 7 - HP120x7 HP100x8 HP120x7 -

9 1950 2055 1500 1950 2400 8 6 8 6 HP160x7 HP80x6 HP160x7 HP80x6

10 1500 3425 1950 2040 1950 8 10 8 8 HP120x7 FB10x100 HP120x7 HP160x7

11 1500 3425 1950 2040 1950 18 18 12 24 HP120x7 FB10x100 HP120x7 HP120x7

12 1500 3425 1950 2040 1950 8 10 8 8 HP120x6 FB10x100 HP120x7 HP160x7

13 1500 3425 1950 2040 1950 8 12 8 8 HP120x6 FB10x100 HP120x7 HP160x7
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Table 4 CLF values for selected junctions

ID Octave
Coupling loss factor [-]

1_2 2_1 1_3 2_3 3_2 3_1 1_4 2_4 3_4 4_1 4_2 4_3

1

63 1.2E-01 1.7E-01 - - - - - - - - - -

125 1.6E-02 1.2E-02 - - - - - - - - - -

250 1.4E-02 1.2E-02 - - - - - - - - - -

500 8.1E-03 7.1E-03 - - - - - - - - - -

1000 7.4E-03 5.8E-03 - - - - - - - - - -

2000 5.2E-03 4.0E-03 - - - - - - - - - -

2

63 9.5E-03 1.2E-02 - - - - - - - - - -

125 4.7E-03 6.1E-03 - - - - - - - - - -

250 3.5E-03 5.7E-03 - - - - - - - - - -

500 3.6E-03 5.7E-03 - - - - - - - - - -

1000 3.4E-03 4.7E-03 - - - - - - - - - -

2000 2.2E-03 3.1E-03 - - - - - - - - - -

3

63 4.1E-03 5.4E-03 2.0E-02 8.0E-03 6.7E-03 1.9E-02 - - - - - -

125 2.5E-03 4.4E-03 3.3E-02 7.7E-03 5.3E-03 3.3E-02 - - - - - -

250 3.2E-03 6.5E-03 6.4E-03 6.5E-03 3.4E-03 6.3E-03 - - - - - -

500 2.8E-03 4.4E-03 4.2E-03 4.4E-03 2.5E-03 4.3E-03 - - - - - -

1000 2.3E-03 4.0E-03 2.2E-03 4.0E-03 2.4E-03 2.2E-03 - - - - - -

2000 1.7E-03 2.8E-03 1.1E-03 2.7E-03 1.8E-03 1.1E-03 - - - - - -

4

63 2.6E-03 1.3E-03 7.2E-02 2.4E-03 2.9E-03 5.7E-02 - - - - - -

125 1.3E-03 6.8E-04 6.3E-02 8.0E-04 3.3E-03 6.3E-02 - - - - - -

250 2.1E-03 9.9E-04 3.4E-02 7.4E-04 1.6E-03 3.8E-02 - - - - - -

500 1.7E-03 1.0E-03 1.0E-02 8.5E-04 1.4E-03 1.1E-02 - - - - - -

1000 2.0E-03 1.1E-03 8.5E-03 9.4E-04 1.8E-03 9.2E-03 - - - - - -

2000 1.5E-03 8.4E-04 4.6E-03 7.8E-04 1.5E-03 4.5E-03 - - - - - -

5

63 4.8E-02 3.4E-02 4.9E-01 7.2E-03 1.5E-02 3.5E-01 - - - - - -

125 8.1E-03 3.1E-03 7.9E-02 5.9E-03 1.4E-02 1.1E-01 - - - - - -

250 5.7E-03 2.3E-03 3.1E-02 1.9E-03 1.8E-03 2.9E-02 - - - - - -

500 2.0E-03 1.7E-03 1.1E-02 1.6E-03 1.7E-03 1.1E-02 - - - - - -

1000 2.5E-03 1.9E-03 7.0E-03 2.0E-03 2.7E-03 8.2E-03 - - - - - -

2000 2.0E-03 1.3E-03 4.3E-03 1.2E-03 1.8E-03 4.2E-03 - - - - - -

6

63 8.5E-03 1.0E-02 1.3E-02 1.7E-02 7.0E-03 1.4E-02 - - - - - -

125 5.9E-03 7.4E-03 7.5E-03 7.9E-03 4.7E-03 1.0E-02 - - - - - -

250 2.4E-03 7.0E-03 4.2E-03 6.4E-03 2.6E-03 3.4E-03 - - - - - -

500 2.6E-03 6.2E-03 3.0E-03 6.5E-03 2.9E-03 3.1E-03 - - - - - -

1000 2.0E-03 4.0E-03 1.6E-03 3.9E-03 2.0E-03 1.7E-03 - - - - - -

2000 1.6E-03 3.0E-03 7.6E-04 3.0E-03 1.7E-03 7.5E-04 - - - - - -

7

63 4.6E-03 9.9E-03 2.0E-02 3.3E-03 4.1E-03 1.6E-02 - - - - - -

125 3.6E-03 5.5E-03 1.3E-02 6.4E-03 4.5E-03 1.4E-02 - - - - - -

250 4.3E-03 4.5E-03 6.7E-03 4.3E-03 2.8E-03 7.5E-03 - - - - - -

500 2.7E-03 4.5E-03 5.3E-03 4.5E-03 2.9E-03 5.6E-03 - - - - - -

1000 2.8E-03 4.0E-03 2.7E-03 3.9E-03 2.5E-03 2.5E-03 - - - - - -

2000 1.9E-03 2.7E-03 1.4E-03 2.6E-03 2.0E-03 1.5E-03 - - - - - -
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ID Octave
Coupling loss factor [-]

1_2 2_1 1_3 2_3 3_2 3_1 1_4 2_4 3_4 4_1 4_2 4_3

8

63 2.6E-03 5.4E-03 7.0E-03 7.7E-03 4.9E-03 1.0E-02 - - - - - -

125 2.3E-03 4.6E-03 3.6E-03 5.1E-03 2.7E-03 4.4E-03 - - - - - -

250 1.9E-03 4.3E-03 2.3E-03 3.2E-03 2.3E-03 4.1E-03 - - - - - -

500 2.1E-03 3.2E-03 1.7E-03 2.9E-03 2.2E-03 2.0E-03 - - - - - -

1000 1.2E-03 2.2E-03 1.0E-03 2.5E-03 1.7E-03 1.2E-03 - - - - - -

2000 7.4E-04 1.3E-03 6.0E-04 1.4E-03 9.2E-04 6.8E-04 - - - - - -

9

63 5.0E-03 3.8E-03 3.5E-02 1.3E-03 2.5E-03 2.5E-02 6.7E-03 4.7E-03 1.1E-03 8.6E-04 4.0E-03 2.5E-03

125 2.0E-03 1.5E-03 1.2E-02 1.3E-03 2.0E-03 6.0E-03 3.2E-03 2.1E-03 1.4E-03 1.6E-03 1.2E-03 1.6E-03

250 1.9E-03 1.3E-03 7.0E-03 1.3E-03 1.1E-03 4.6E-03 2.2E-03 1.5E-03 1.1E-03 1.1E-03 1.4E-03 1.7E-03

500 2.4E-03 1.4E-03 4.6E-03 1.3E-03 1.2E-03 2.5E-03 2.5E-03 1.2E-03 1.0E-03 9.2E-04 1.3E-03 1.3E-03

1000 1.7E-03 9.9E-04 3.3E-03 1.1E-03 1.1E-03 2.2E-03 1.7E-03 9.6E-04 5.6E-04 4.9E-04 1.2E-03 1.0E-03

2000 1.1E-03 6.1E-04 1.9E-03 6.2E-04 6.2E-04 1.0E-03 1.1E-03 5.6E-04 3.1E-04 2.9E-04 6.6E-04 5.9E-04

10

63 2.5E-03 3.4E-03 9.5E-03 3.9E-03 2.5E-03 8.9E-03 3.5E-03 4.5E-03 6.3E-03 4.2E-03 3.3E-03 4.4E-03

125 1.5E-03 3.6E-03 8.2E-03 2.9E-03 1.8E-03 8.7E-03 1.9E-03 2.6E-03 4.7E-03 2.8E-03 4.0E-03 4.2E-03

250 1.9E-03 3.1E-03 2.5E-03 3.3E-03 2.4E-03 2.8E-03 1.3E-03 1.7E-03 6.6E-03 3.4E-03 1.6E-03 2.2E-03

500 1.5E-03 2.3E-03 1.8E-03 2.4E-03 1.5E-03 2.1E-03 1.0E-03 1.2E-03 3.0E-03 2.4E-03 2.0E-03 2.3E-03

1000 1.7E-03 2.6E-03 1.3E-03 2.5E-03 1.4E-03 1.1E-03 8.6E-04 1.0E-03 2.0E-03 1.5E-03 1.3E-03 1.7E-03

2000 1.0E-03 1.8E-03 6.0E-04 1.6E-03 1.0E-03 6.5E-04 5.9E-04 6.6E-04 1.4E-03 9.5E-04 6.9E-04 7.7E-04

11

63 3.1E-03 4.0E-03 2.0E-02 1.5E-03 7.0E-04 1.9E-02 4.8E-02 4.4E-02 8.8E-03 4.7E-03 1.6E-02 7.4E-03

125 1.7E-03 8.5E-03 9.1E-03 3.0E-03 9.0E-04 6.2E-03 6.1E-02 5.9E-02 4.0E-03 7.6E-03 3.5E-02 4.1E-02

250 2.4E-03 3.6E-03 2.4E-03 1.6E-03 1.0E-03 2.2E-03 4.0E-03 5.4E-03 3.5E-03 6.0E-03 1.9E-03 4.6E-03

500 1.5E-03 2.4E-03 8.8E-04 1.0E-03 6.3E-04 5.9E-04 2.4E-03 3.8E-03 3.5E-03 3.4E-03 1.0E-03 2.3E-03

1000 1.3E-03 1.6E-03 6.4E-04 1.0E-03 4.6E-04 3.4E-04 3.0E-03 3.3E-03 3.0E-03 2.4E-03 9.7E-04 2.0E-03

2000 1.5E-03 2.1E-03 1.1E-03 1.0E-03 3.9E-04 5.8E-04 2.7E-03 3.3E-03 2.1E-03 1.9E-03 8.2E-04 1.5E-03

12

63 4.0E-03 8.4E-03 8.7E-03 2.0E-02 1.4E-02 5.8E-03 2.7E-03 1.4E-03 7.3E-03 3.2E-03 4.3E-03 8.0E-03

125 3.2E-03 4.4E-03 4.5E-03 4.3E-03 1.9E-03 4.8E-03 1.3E-03 1.6E-03 5.2E-03 3.3E-03 2.7E-03 2.8E-03

250 3.0E-03 5.2E-03 1.0E-03 3.9E-03 1.9E-03 7.4E-04 1.9E-03 2.2E-03 4.9E-03 2.2E-03 1.4E-03 2.0E-03

500 1.8E-03 2.9E-03 8.5E-04 4.4E-03 2.1E-03 7.7E-04 1.4E-03 1.4E-03 2.5E-03 1.3E-03 1.5E-03 1.8E-03

1000 2.0E-03 3.4E-03 1.1E-03 2.5E-03 1.1E-03 7.9E-04 7.6E-04 7.8E-04 2.2E-03 1.4E-03 1.1E-03 1.4E-03

2000 1.7E-03 2.8E-03 7.0E-04 2.0E-03 9.9E-04 5.8E-04 5.7E-04 5.5E-04 1.7E-03 8.5E-04 4.7E-04 5.2E-04

13

63 4.0E-03 8.4E-03 8.7E-03 2.0E-02 1.4E-02 5.8E-03 2.7E-03 1.4E-03 7.3E-03 3.2E-03 4.3E-03 8.0E-03

125 3.2E-03 4.4E-03 4.5E-03 4.3E-03 1.9E-03 4.8E-03 1.3E-03 1.6E-03 5.2E-03 3.3E-03 2.7E-03 2.8E-03

250 3.0E-03 5.2E-03 1.0E-03 3.9E-03 1.9E-03 7.4E-04 1.9E-03 2.2E-03 4.9E-03 2.2E-03 1.4E-03 2.0E-03

500 1.8E-03 2.9E-03 8.5E-04 4.4E-03 2.1E-03 7.7E-04 1.4E-03 1.4E-03 2.5E-03 1.3E-03 1.5E-03 1.8E-03

1000 2.0E-03 3.4E-03 1.1E-03 2.5E-03 1.1E-03 7.9E-04 7.6E-04 7.8E-04 2.2E-03 1.4E-03 1.1E-03 1.4E-03

2000 1.7E-03 2.8E-03 7.0E-04 2.0E-03 9.9E-04 5.8E-04 5.7E-04 5.5E-04 1.7E-03 8.5E-04 4.7E-04 5.2E-04
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AbstrAct

Technological innovation for re-identifying maritime vessels plays a crucial role in both smart shipping technologies 
and the pictorial observation tasks necessary for marine recon- naissance. Vessels are vulnerable to varying gradations 
of engaging in the marine environment, which is complicated and dynamic compared to the conditions on land. Fewer 
picture samples along with considerable similarity are characteristics of warships as a class of ship, making it more 
challenging to recover the identities of warships at sea. Consequently, a convolutional dynamic alignment network 
(CoDA-Net) re-identification framework is proposed in this research. To help the network understand the warships within 
the desired domain and increase its ability to identify warships, a variety of ships are employed as origin information. 
Simulating and testing the winning of war vessels at sea helps to increase the network’s ability to recognize complexity 
so that users can better handle the effects of challenging maritime environments. The impact of various types of ships 
as transfer items is also highlighted. The research results demonstrate that the enhanced algorithm increases the overall 
first hit rate (Rank1) by approximately 5.9%; it also increases the mean average accuracy (mAP) by approximately 
10.7% and the correlation coefficient by 0.997%.

Keywords: Warship re-identification, Transfer learning; Domain adaptability; CoDA-Net; Con-voluted Sea environment

INTRODUCTION

The precise recognition of targets on the sea surface is 
a crucial requirement to safeguard maritime security, preserve 
marine ecosystems, and efficiently harness marine resources 
[1]. To make pos- sible a linear breakdown of the output 
into distinct input contributions, convolutional dynamic 
alignment networks (CoDA-Nets) describe the classification 
prediction through a sequence of input-dependent linear 
adjustments. The generated contribution maps align with 
discriminative input patterns given the alignment of the 
dynamic alignment units (DAUs). These model-inherent 
breakdowns have excellent visual quality and perform better 
in terms of quantitative measures than the current attribution 

techniques. Additionally, CoDA-Nets are effective classifiers 
that provide outcomes comparable to those of the ResNet and 
VGG algorithms. This article introduces CoDA- Nets, a novel 
category of neural network models that excel at classification, 
with a notable inherent capacity for interpretability. These 
models are constructed based on DAUs [2], which dramatically 
transform the input using weighted vectors that spontaneously 
coordinate alongside task-relevant features.

The accurate identification of ocean surface points is 
a crucial factor for ensuring naval security, safeguarding 
the maritime environment, and efficiently utilising marine 
resources. The current ma- rine environment involves 
increasing challenges in marine traffic, coupled with growing 
concerns related to piracy, terrorist activities, the illicit drug 
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trade, and other unlawful practices. Therefore, enhancing 
the precise identification of ocean surface destinations has 
become imperative. The precise identification of sea surface 
targets has the potential to enhance maritime navigation capa- 
bilities, foster international cooperation, preserve marine 
ecosystems, and contribute to economic development while 
ensuring maritime safety [3].

The distinctive characteristics of the maritime environment 
and the inflexibility of ships con- tribute to notable variations 
in ship appearance due to changes in viewpoint and 
scale, posing a challenge to intelligence, surveillance, and 
reconnaissance (ISR). Additionally, the scarcity of publicly 
available datasets specific to ISR exacerbates the recognition 
difficulty. While substantial efforts have focused on coarse 
or fine-grained classification, there is a limited amount of 
research dedicated to ISR [4]. The COLREG [5] at Sea stipulates 
that all passenger vessels, as well as cargo vessels that displace 
over 300 tons, must be fitted with an automated navigation 
system (AIS).

This paper aims to investigate the extent to which the 
performance of methods for vessel de- tection can be enhanced 
by utilising a pre-trained deep learning model specifically 
trained on marine data [6]. However, because of the greater 
interpretation of the marine environment and farther-away 
vessel goals, the capacity of the vessel fluctuates significantly 
under various posi- tions, making radar recognition more 
challenging [7]. The identification of the maritime environ- 
ment surrounding ships may now be greatly aided by visible 
light cameras because of the quick advancement of computer 
vision equipment.

The primary objective in maritime transportation 
surveillance and autonomous ship navigation is to establish an 
effective visual perception system that has both high efficiency 
and accuracy in detecting marine objects. Consequently, there 
is a necessity to compile advanced deep-learning algorithms 
and top-notch datasets specific to maritime scenarios [8]. 
Additionally, visible cam- eras can give deeper target data, 
including the target shape, measurements, and other features, 
in comparison to AIS and radar mechanisms, which can only 
deliver rudimentary data, such as the target position and 
speediness. Visual cameras can aid in more precise target 
identification and classification, enhancing the recognition 
precision [9].

Moreover, recent studies on ship re-identification utilise 
ships that are either anchored in ports or floating effortlessly as 
identifiable entities [10], [11], [12]. In contrast to solid shooting 
conditions on land, the ocean’s surface, where the vessel is 
situated, moves a great deal; therefore, the point of focus is 
frequently tilted. The speed and sea state will determine the 
degree of tilting for a typical moving vessel. Due to the weight, 
both the draft and the form of the portion of the sea surface 
that is visible will be altered.

The identification of ships is crucial for effective maritime 
surveillance, port administration, and secure navigation. 
Nevertheless, the advancement of ship detection methods 
significantly lags behind other detection techniques like face 
detection, pedestrian detection, traffic sign/light detec tion, text 

detection, etc. [13]. First, VesselReid and VesselReid-539 [9] 
are two datasets used to re-identify known ships, but they 
are not open source. Based on the publicly available resource 
collection approach, we produced and annotated a dataset of 
ships that included six more kinds of non-military containers 
in addition to war vessels. We replicated the vessels’ routes 
that were visible on the surface of the water by spinning them 
at a small inclination. The targeted area instructional set, as 
well as the test collection, were selected to have an elevated 
resemblance to images of battleships in various situations, 
whereas the other forms of private citizen containers were 
utilised as the foundation field training set.

A novel dataset for boat re-identification is introduced; it 
consists of annotated images captured during the previous 
summer within the marine protected area of Porto 
Cesareo. The baseline re- sults are established by applying 
a discriminative learning convolutional neural network (CNN) 
for boat re-identification [14].

This paper makes the following contributions:
VesselReid [10] and VesselReid-539 [12] are two datasets 

used to re-identify known ships, but they are not open source. 
Based on the publicly available resource collection approach, 
we produced and annotated a dataset of ships that included six 
more kinds of non-military vessels in addition to warships. By 
rotating them at a small angle, we mimicked the vessel rouses 
that appeared on the water’s surface. The supplementary types 
of noncombatant boats are employed as the foundation field 
training set, while the goal field training set and assessment 
set are selected to have a high likeness to battleship photos 
in various circumstances.

Next, we provide a transfer learning-based CoDA-Net 
re-identification technique. By transfer- ring the relevant 
aspects of the photos, this technique can train the system 
with a small number of training pictures of war vessels while 
employing different classes of boats. As a result, the network 
can recognise battleships more accurately and does not need 
to label the photos from the training set’s local information 
again.

Ultimately, the research analysis segment examines the 
impact of vessels as transference data re- garding the accuracy 
of net re-identification while taking into consideration a variety 
of categories, and sampling sizes, as well as the decision to use 
the marine sway modelling technique.

ASSOCIATED WORKS

RE-IDENTIFICATION OF INDIVIDUALS 
ANDAUTOMOBILES

The issue of recovering the identity of a person, which 
primarily focuses on the enhancement of the network 
topology to boost the metric learning impact, is the most 
researched application of iden- tity recovery methods. 
A regional dynamics aligning technique was presented 
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by [15] to address the issue of misaligned human pose models, 
avoiding the need for extra supervision and including global 
characteristics for training. By assessing the worldwide mean 
assembling layer and utilis- ing a consideration method to 
enhance the attention of altitudinal relationships in elemental 
graphs, enhanced the network structure. To address the biased 
estimation issue, [17] enhanced the extrapolation impact for 
the measurement framework and suggested a semi-supervised 
continuous projection metric modelling approach.

In addition to human re-identification, the area of vehicle 
re-identification has also received much study, and tweaks to 
the algorithm’s network structure continue to be its primary 
means of performance enhancement. The influence of the 
vehicle direction was limited, while the identi- fication 
accuracy and speed were increased, thanks to the addition 
of ring concentration slabs to the feature pyramid edifice by 
[18]. The loss function was calculated by [19] using the group 
loss, which improved the network’s learning of the association 
between the global and local properties of the vehicle and the 
detailed recognition of related samples.

STATE-OF-THE-ART VESSEL/BOAT 
RE-IDENTIFICATION

The current state-of-the-art vessel/boat re-identification 
method involves the utilisation of CoDA- Net, a cutting-edge 
method in computer vision. This advanced approach leverages 
the strengths of co-occurrence and distribution alignment to 
achieve the robust and accurate re-identification of vessels or 
boats. CoDA-Net has demonstrated significant advancements 
in handling the complex- ities of maritime scenarios, providing 
enhanced capabilities in recognising and tracking vessels 
across various conditions. Its effectiveness lies in its ability 
to align co-occurrence patterns and distributions, resulting 
in improved accuracy and reliability in the re-identification 
process for ves- sels and boats.

The current state-of-the-art methods in vessel/boat 
re-identification involve advanced techniques and technologies 
aimed at accurately identifying and tracking maritime vessels. 
This field has wit- nessed significant advancements in recent 
years, driven by the growing need for robust maritime 
surveillance and security. The following are some key aspects 
of the state of the art in vessel/boat re-identification:

Deep Learning Techniques: State-of-the-art methods 
often leverage deep learning architectures, such as 
CNNs and siamese networks, for feature extraction and 
similarity measurement. These models can effectively learn 
discriminative features from maritime imagery.

Appearance and Motion Features: Vessel re-identification 
systems consider both appearance features (colors, shapes, and 
textures) and motion features (trajectory, speed, and direction) 
to enhance identification accuracy. This comprehensive 
approach improves the robustness of re- identification systems 
across different environmental conditions.

Object Detection and Tracking: Advanced object 
detection and tracking algorithms play a crucial role in 
accurately locating and following vessels in dynamic maritime 

environments. These techniques help maintain consistent 
tracks and improve the reliability of re-identification.

Data Fusion and Multi-Modal Analysis: State-of-the-
art methods often integrate data from multiple sources, 
such as radar, AIS data, and optical imagery. This fusion of 
information allows for a more comprehensive understanding 
of the maritime scenario, enhancing the accuracy of 
re- identification.

Benchmark Datasets: The availability of benchmark 
datasets specifically designed for vessel re-identification 
has contributed to the advancement of the field. These 
datasets facilitate the train- ing and evaluation of algorithms, 
promoting the development of more accurate and generalised 
models.

Real-Time Re-identification Systems: The current state of 
the art includes the development of real-time re-identification 
systems capable of processing streaming maritime data. These 
systems are crucial for timely response in applications such 
as maritime security and surveillance.

Adaptive and Robust Algorithms: State-of-the-art 
re-identification algorithms are designed to be adaptive to 
changing environmental conditions, illumination variations, 
and occlusions. Ro- bustness is a key consideration, ensuring 
a reliable performance in diverse maritime scenarios.

Privacy and Ethical Considerations: As with any 
surveillance technology, ethical and privacy concerns are 
integral to the state of the art in vessel re-identification. 
Modern systems incorporate features to address these issues, 
such as anonymization techniques and compliance with 
privacy regulations.

Continuous research and development in vessel 
re-identification aim to further enhance the accu- racy, 
efficiency, and applicability of these systems in real-world 
maritime scenarios.

METHODOLOGY

There are significant differences in target shapes between 
pedestrians and warships, as well as when the same battleship 
is viewed from various angles. The frontal perspective (panel 
a) and the side view (panel b) of Fig. 1 both demonstrate how 
the target’s entire aspect ratio is inconsistent. As a result, the 
size standardisation procedure must be done first. By adding 
gray bars as fillers, the goal proportion is made constant and 
scaled to the same sharpness as the neural network’s input 
parameter. To determine the local loss, the input data from 
various pictures are then simultaneously split, evenly divided 
into numerous rectangular parts of the same shape, and 
aligned. The input information is also used to compute the 
cross-entropy loss of global characteristics. Using the label 
information from each batch of photos, the identification loss 
is determined. Next, transfer learning is used to quantify the 
transfer loss using civilian vessels. The network weights are 
modified after combining the outcomes associated with these 
four loss functions. A nine-layer CoDA-Net uses a matrix 
W0→9(a0) to calculate the outcome a9 for an input variable 
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a0 as a linear transformation to ensure that the outcome may 
be linearly deconstructed into input components, which are 
depicted in Fig. 2. Several levels of Dynamic Alignment Units 
(DAUs) are used to compute W0→9 in stages, producing matrices 

GLOBAL FEATURE ANALYSIS

In addition, local characteristics need to be extracted 
for feature extraction, but global character- istics cannot 
be disregarded. The network was utilised to extract the 
characteristics of the given input information at various 
depths and the computation of the global characteristic 
distances and recognition loss across samples is presented 
in Fig. 4.

Wl that are aligned with the corresponding inputs al−1. The 
resulting matrix W0→9 consequently aligns favourably with 
task-relevant patterns.

Fig. 1: The structure of Tran-AlignedReID.

Fig. 2: Graphical representation of a nine-layer CoDA-Net.

LOCAL FEATURE INVESTIGATION

Each differently shaped warship target map is going 
to be employed as the consistent input infor- mation for 
a  convolutional dynamic neural network, along with 
identifying features obtained using a ResNet50 backbone 
network framework that has been compressed for dynamic 
characteristic positioning. The scheming procedure is shown 
in Fig. 3.
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Fig. 3: The local characteristics are dynamically aligned using the loss computation methodology.

Fig. 4: The method used to calculate the feature distance, as well as the overall loss.
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DYNAMIC ALIGNMENT UNITS

DAUs are specified as follows (1):

 (1)

In this equation, x ∈ Rd denotes an involvement direction. 
A ∈ Rd∗r and B ∈ Rr∗d are fix something on, modification 
conditions, b ∈ Rd is the bias vector, and g(u) = α(||u||)
u is a non-linear purpose that balances the quality of its 
environment. In contrast with a single matrix M ∈ Rd∗d, using 
AB permits us to regulate the supreme rank r of the alteration 
and to decrease the numeral of limits; we will hereafter denote 
by r as the rank of a DAU. U represents units, which can be 
perceived on the right side of Eq. (1), the DAU linearly 
converts the contribution x(P 1).

Assuming the quadratic procedure (xT BT AT x) and the 
rescaling function α(||u||), the yield of the DAU is a non-
linear function of its input.

CoDA-Net

Comparable to an individual linear classification algorithm, 
a single layer of DAUs has a lim- ited modeling capability. DAUs 
may, however, be utilised as the fundamental component of 
deep convolutional neural networks, which results in effective 
classifiers. Most significantly, we demon- strate in the following 
subsection that a Convolutional Dynamic Alignment Network 
(CoDA-Net) of this type mutually maintains the dynamic 
linearity (P1) and the alignment maximization (P2) features 
of the DAUs. Similarly, to dynamic localized filtering stages, 
every single filter associated with a CoDA level is modeled by 
a DAU [20]. The proposed CoDA-Net is shown in Figure 5.

It is important to emphasise that the outcome at this 
phase is a  dynamic linear transformation of the input to 
the layer, mirroring the intricacy seen in rectilinear layers 
constrained by specific weight limits. The details of this 
process are outlined in the supplementary section. Toward 
the conclusion of this segment, we underscore a significant 
distinction between maximising the output and optimising 
for classification using the binary cross-entropy (BCE) loss. We 
delve into the ram- ifications of temperature scaling in the 
case study and illustrate the ideal loss function employed in 
our investigation.

Fig. 5: Proposed CoDA-Net model.

DYNAMIC LINEARITY (P1):

We observe that linearity is preserved and that adaptive 
linear projection also occurs from the sequential application 
of many layers of DAUs based on Eq. (2):

(2)

As previously indicated, every column in the array Wl 
corresponds to the weighted vector of just one DAU. Let Wl 
be the linearly transformed matrix generated by a given layer 
of DAUs and consider the given input vector information of 
that layer. As a result, the outcome of this particular layer is 
represented by the Eq. (3):

(3)

Thus, the sequential linear changes in a network of DAUs 
may be compacted. For instance, the vector al2 may be written 
as Eq. (4) a linear modification of al1 given any combination 
of activating vectors al1 and al2 using l1 > l2:

(4)

(5)

For instance, the linear progression from the starting point 
to the resultant space is modelled by the matrix W0L(a0 = x) 
= W (x); see Fig. 6. Since a similar linearity is maintained for 
any two layers, it is possible to dissect the j−th entry for every 
activated vector a1 in the network’s structure into incoming 
contributions by using Equation (6):

(6)

Fig. 6: The correlation maximisation in the DAUs can be emphasized 
by reducing the upper bound (see Eq. (2)). We display contribution maps using 

an approach trained under various temperature conditions.
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ALIGNMENT MAXIMISATION (P2):

Because each DAU functioning can only, independently 
of its variables, replicate the standard of its input Eq. (2), the 
outcome of a CoDA-Net has constraints and is self-governing 
of the system parameters. Therefore, the linear chain of these 
processes must also have a superior bound that must be 
independent of the parameter values. Consequently, all DAUs 
in the network must provide weights w(al) that are well-aligned 
with their respective class characteristics to attain maximum 
average outputs (for example, the class logit over the subset 
of pictures of that class). In simpler terms, the weights will 
correspond to input discriminatory characteristics.

CoDA Net COMPARED TO TRANSFER LEARNING

Convolutional Dynamic Alignment Networks (CoDA-
Net) and transfer learning are related con- cepts but address 
different aspects of machine learning and neural network 
training. Let’s explore the key differences between CoDA-Net 
and transfer learning:

Objective:
CoDA-Net: CoDA-Net specifically focuses on domain 

adaptation, which is a subfield of trans- fer learning. Its 
primary objective is to align feature distributions between 
different domains to improve the performance of a model on 
a target domain that may have a different distribution from 
the source domain.

Transfer Learning: Transfer learning is a broader concept 
that includes various strategies for transferring knowledge 
gained from one task (or domain) to another. It encompasses 
approaches such as fine-tuning pre-trained models, using 
pre-trained feature extractors, and leveraging knowl- edge 
across related tasks.

Alignment Mechanism:
CoDA-Net: CoDA-Net employs conditional adversarial 

training to dynamically align feature distributions between 
the source and target domains. It explicitly addresses the 
challenge of distribution shift during domain adaptation.

Transfer Learning: Transfer learning encompasses 
a variety of methods, and the alignment of feature distributions 
may not be the primary focus. It includes techniques like fine-
tuning, where a pre-trained model is adjusted to a new task, 
and feature extraction, where certain layers of a pre-trained 
model are used for a related task.

Use Cases:
CoDA-Net: CoDA-Net is specifically designed for scenarios 

where there is a significant distri- bution shift between the 
source and target domains. It is well-suited for domain 
adaptation tasks, particularly in computer vision applications.

Transfer Learning: Transfer learning is a more general 
concept applicable to a wide range of machine learning tasks. 
It is used in various domains, including image classification, 
natural lan- guage processing, and speech recognition.

Architecture:
CoDA-Net: CoDA-Net introduces a specific neural network 

architecture that incorporates con- ditional adversarial 
training for dynamic domain alignment.

Transfer Learning: Transfer learning can be implemented 
using different architectures, and it doesn’t prescribe a specific 
neural network structure. It is more of a paradigm or strategy 
than a unique architecture.

In summary, CoDA-Net is a specialized approach within 
the broader field of transfer learning. It explicitly addresses 
the challenge of domain adaptation by dynamically aligning 
feature distri- butions. Transfer learning, on the other hand, 
encompasses a range of techniques beyond domain adaptation 
and can be applied to various tasks using different strategies. 

Fig. 7: Upper row: Outcomes for the localization metric. Lower row: Metric for pixel removal. Specifically, we graph the average target 
class probability following the removal of x% of the least significant pixels. The outcomes of a CoDA-Net trained on TinyImagenet are 
illustrated in the left column, while the outcomes of those trained on CIFAR-10 are pre- sented in the center column. Additionally, the 

impact of the temperature parameter on the interpretability of CoDA-Nets is demonstrated in the right column: as anticipated, a higher 
temperature results in increased interpretability.
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We show the temperature parameter on the interpretability 
of CoDA-Nets result in Figure 7.

Scalability of temperature along with and loss function:
We have assumed up until this point that applying 

a maximisation or minimisation loss to each CoDA-Net 
outcome is similar to minimising the BCE loss for a specific 
sample. While in theory, this is true, BCE imposes a further, 
insignificant impact called saturation. In particular, well- 
aligned weight vectors are not necessary to obtain a minimal 
BCE loss using a CoDA-Net. Once the classification accuracy 
is high and the network outputs are significant, the gradient 
and, as a result, the alignment pressure, will vanish. Because 
every single DAU within the networks is superior-bounded, 
as stated in the paragraph above, the effect of a CoDA-Net is 
superior-bounded regardless of the network configurations, 
making it possible to easily decrease this impact. The BCE 
loss function is defined mathematically in Eq. (7):

(7)

We may explicitly lower this maximum limit by modulating 
the network response with a tem- perature variable T such 
that ŷ(x) = T −1W0→L(x)x and thus boost the orientation 
compression in the DAUs by preventing the early saturation 
caused by BCE. Particularly, the greater the induced DAU 
output maximisation should be, the lower the upper bound 
should be, as the network has to accumulate more signal to 
acquire high class logits (and a negligible gradient), which 
requires high-class logits.

Hence, the total loss given a vector of input xi as well as 
the target variable yi is calculated as Equation (8):

(8)

Here, λ denotes the degree of regularisation, σ activates 
each vector element using the sigmoid function, b0 denotes 
a fixed bias term, and ⟨|W0→L(xi)|⟩ denotes the mean of the 
absolute values of all the entries in the matrix W0→L(xi).

IMPLEMENTATION DETAILS

Shared matrix B:
In our tests, we chose to distribute the matrix B ∈ Rr∗d 

to all DAUs in a certain layer.  Hav- ing the DAUs improves 
the parameter efficiency. They share a similar r-dimensional 
subspace while maintaining the fixed maximum rank for 
each DAU at the selected r value.

Input encoding:
In associated works, we demonstrated how the dynamic 

weights’ norm-weighted cosine correlation to the layer resources’ 
norm is optimised, along with how a DAU’s outcome can 
only be as high as the norm of its input. This benefits pixel 
with high RGB values since they have a higher norm and may 
provide higher outputs during the maximisation process. To 
reduce this bias, we encrypt each incoming pixel as [r, g, b, 
1 − r, 1 − g, 1 − b], with r, g, b[0, 1], by adding the negative 
picture as all three supplementary colour pathways.

EXPERIMENTAL RESULTS AND ANALYSIS

DATASET

The proposed maritime ship picture dataset VesselID-539 
from the Marine Traffic homepage is the source of the photos 
for this paper’s dataset. The photographs were captured all 
over the world at various points in time and places, onboard 
ships and on land, and a given boat exhibits a wide range of 

Fig. 8: Outcomes of re-identifying the vessels utilising CoDA Networks. (a) The training instruction set without SSS,  
and (b) Alongside the training set using SSS.
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stances as a result of the many periods and positions in which 
the pictures were shot.

Warships are the sorts of ships with the highest criteria 
for portability and camouflage, giving them a more uniform 
colour, a comparatively quick speed, and flexible behaviour, 
which requires greater manoeuvring capabilities than civilian 
vessels. As a result, the training and test sets for this paper’s 
investigations contain battleship images, with different kinds 
of boats serving as the transferred collection of data.

Regarding the vessel pictures gathered for this study, 
there are a total of 163 vessels and 4780 photos. Table 1 
lists the precise categories and quantities. Additionally, the 
photographs of battle- ship categorization are split into training 
and test sets with a 1 : 1 ratio, with 20% of the experiment set’s 
pictures coming from the query database.
Tab. 1: Comparison between the findings of the current study and existing 

literature.
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Trans-Reid [21] No 62.5 88.6 100 100 386.62

PSD-Net [22] 17.2 5.7 20 20 575.21

AN-Net [23] 53.2 82.9 97.1 97.1 318.62

Tran-AlignedReID 56.6 97.1 100 100 91.1

PSD-Net [21] 12.2 17.1 51.4 68 575.21

Trans-Reid [22] Yes 38.3 68.6 85.7 94.3 386.62

AN-Net [24] 55.4 91.4 100 100 318.62

CoDA-Net (Proposed work) 65.9 97.5 97.5 97.5 91.8

SEA SWAY (SSS) SIMULATION

Sea sway simulation (SSS) involves replicating the motion 
or oscillation of the sea surface due to various environmental 
factors. This simulation is crucial for various applications, 
including maritime engineering, ship design, virtual maritime 
training, and video game development. The following is 
a general description of how one might simulate sea sway:

Physical Factors:
Wind Forces: Consider incorporating algorithms that 

simulate wind forces on the sea surface, as wind is a primary 
factor influencing sea sway.

Currents and Tides: Include the effects of ocean currents 
and tides, which contribute to the overall motion of the sea.

Wave Generation: Use wave generation algorithms to 
create realistic wave patterns. Different types of waves, 
such as regular waves, irregular waves, and swell, should be 
considered based on the specific application.

Mathematical Models: Apply mathematical models that 
describe the motion of the sea. These may include sinusoidal 

functions for regular waves or more complex wave models for 
irregular sea conditions.

Physics-Based Simulation: Implement physics-based 
simulations that take into account the dy- namics of water 
particles. Consider using fluid dynamics principles to model 
the interactions between waves and the sea surface.

Real-Time Interaction: For applications like maritime 
training or ship simulation, ensure that the sea sway simulation 
can interact in real-time with external factors such as ship 
movements or user inputs.

Graphic Rendering: Use graphic rendering techniques 
to visualize the simulated sea sway. This involves creating 
realistic animations or visual representations of the sea surface 
motion.

Adjustable Parameters: Provide adjustable parameters 
for users to customize the simulation based on specific 
environmental conditions, including wave height, frequency, 
and direction.

Integration with External Data: Integrate the simulation 
with real-time environmental data sources, such as weather 
conditions and oceanographic data, to enhance the accuracy 
of the simu- lation.

Validation and Calibration: Validate and calibrate the 
simulation by comparing its output to observed or measured 
sea sway data. This step ensures that the simulation accurately 
represents real-world conditions.

Application-Specific Features: Tailor the simulation to 
the specific requirements of the applica- tion. For example, 
in ship design, the focus may be on how vessels respond to 
different sea states.

Simulating sea sway is a complex task that involves the 
integration of physics, mathematics, and computer graphics 
to create realistic and accurate representations of the dynamic 
sea surface. The level of detail and sophistication in the 
simulation will depend on the intended application and the 
available computational resources.

COMPARATIVE ANALYSIS OF THE CoDA NeT 
APPROACH WITH THE SSS METHODOLOGY

When both strategies are used at once, the recognition 
proficiency is reduced. As a result, the SSS can complete the 
data augmentation by itself. The statistics indicate that the 
GridMask approach as well as the overall hide-and-seek 
approach have a minimal impact on the feature improvement 
of battleship photos.

Because of the limitations of the testing apparatus, the 
height and the width of our input pictures are fixed to 256X512, 
and the precision comparative outcomes are displayed in 
Table 1. The suggested approach is examined with various 
best methodologies.
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VISUAL COMPARISON

Fig. 9: Results of investigating set validation using various training techniques: 
Back.

Fig. 10: Results of investigating set validation using various training 
techniques: Side.

Fig. 11: Results of investigating set validation using various training 
techniques: Front side.

Fig. 12: Effects of query set validation for real-life video investigations using 
various train- ing approaches: Side.

The side that contains the fewest samples is chosen for 
labelling in Figs. 9, 10, and 11, which display the results of 
evaluating the query set for three distinct perspectives of the 
battleship. Without Green boxes indicate samples that were 
mistakenly recognised, while green boxes indicate samples 
that were successfully identified. In Figs. 9 and 10, the test 
findings are more encouraging. The impact of the networks 
created using the four distinct training techniques varies, but 
the first graph of the search results is accurate. The network 
that has been trained using the transfer approach functions 
haphazardly but the initial graph of the finding is precise, 
whereas the network that was not trained using the transfer 
method is unable to search for precise outcomes. This is in 
contrast to the average test outcomes shown in Figure 11.

A navigational video showing the marine destroyer was 
filmed to test the proposed approach’s efficacy. In Figure 12, 
the identification effect under various angles is depicted. The 
side with the fewest samples is chosen for labelling, while the 
olive box and green box represent the mistakenly recognized 
specimens and the purple box represents the successfully 
identified samples.

Fig. 13: Effects of query set validation for real-life video investigations using 
various train- ing approaches. (b) Side.
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Fig. 14: Effects of query set validation for real-life video investigations using 
various train- ing approaches. (c) Front side.

Fig. 15: Effects of query set validation for real-life video investigations using 
various train- ing approaches. (d) Front.

STATISTICAL ANALYSIS

After the modelling process is complete, the root mean 
square error RMSE and the correlation coefficient (R2) are used 
to consider the expected and predicted benefits of a flexible 
modulus [25]. The equation that follows Eq. 9 may be used 
to calculate the RMSE:

(9)

The value of the determinant coefficient, or (R2), can be 
calculated using Eq. 10, which is calcu- lated as follows:

(10)

Tab. 2: Data analysis using CoDA-Net.

Techniques RMSE MAE MAPE R2

CoDA-Net 0.05817 0.0698 0.880 0.9973

Res-Net 50 0.06341 0.07231 0.901 0.9067

The mean of the squared errors may be measured by the 
mean absolute percentage error (MAPE). The more moderate 
upsides of the MAPE ensure that the anticipated models will 
be presented in a more advanced manner. The subsequent 
Eq. 11 can be used to calculate the MAPE [26]:

(11)

The MAE, which is defined by Eq. 12, is used to further 
investigate the display and effectiveness of the predicted 
frameworks:

(12)

where m represents the total number of information designs 
present in the informative collection, ypredi represents the 
value that is expected for each information point i, and yobsi 

represents the value is calculated for each information point 
i. The comparative analysis has been carried out, presenting 
the anticipated output from the CoDA-Net, while the actual 
results are provided in Table 2.

CONCLUSION

Regarding the re-identification of warships, a convolutional 
dynamic alignment re-identification network model 
combining transfer learning techniques is put forth in this 
research. On the dataset, Sea sway simulations were run on 
the dataset replicate the sway seen by onboard cameras during 
rough seas. To test the applicability of the transfer method, several 
experiments were conducted us- ing transfer data from various 
types of civilian boats. On the training set and the transferred 
dataset, the impacts of the sea sway simulation approach 
are contrasted. The battleship re-identification problem’s 
suitability for SSS and image enhancement techniques is also 
covered. To demonstrate the method’s superiority, many of 
the best re-identification techniques are compared in this 
re- search.

The CoDA-Nets, a novel family of neural networks, were 
introduced in this study, and it was demonstrated that they 
are efficient classifiers with good comprehension. We first 
introduced the DAUs, which have a structural propensity for 
alignment maximisation, and characterise their out- put as 
a dynamic linear transformation of their input. We model 
filters in a convolutional network using DAUs to produce 
Convolutional Dynamic Alignment Networks (CoDA-Nets). It 
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is feasible to linearly partition the outcome into expenditures 
from different measurements of input thanks to the network’s 
DAUs’ subsequent linear translations of the network’s DAUs. 
We evaluate the quality of these contribution maps’ quality 
by comparing them to different imputation techniques, as 
shown in Eq. (6).

The research results indicate that, in the absence of 
a marine control simulation, the modified procedure increases 
the typical mAP accuracy by 10.7% and the Rank1 accuracy 
by 11.2%. In the instance of marine control recreation, the 
enhanced method increased the Rank1 accuracy by .9% and 
the mAP accuracy by an average of 10.7%. As a result, the 
transfer dynamic alignment algorithm performs battleship 
re-identification duties more effectively, particularly when 
warship wobble is involved.
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AbstrAct

This article discusses the use of a deep learning neural network (DLNN) as a tool to improve maritime safety by 
classifying the potential threat to shipping posed by unexploded ordnance (UXO) objects. Unexploded ordnance 
poses a huge threat to maritime users, which is why navies and non-governmental organisations (NGOs) around the 
world are using dedicated advanced technologies to counter this threat. The measures taken by navies include mine 
countermeasure units (MCMVs) and mine-hunting technology, which relies on the use of sonar imagery to detect and 
classify dangerous objects. The modern mine-hunting technique is generally divided into three stages: detection and 
classification, identification, and neutralisation/disposal. The detection and classification stage is usually carried out 
using sonar mounted on the hull of a ship or on an underwater vehicle. There is now a strong trend to intensify the use 
of more advanced technologies, such as synthetic aperture sonar (SAS) for high-resolution data collection. Once the 
sonar data has been collected, military personnel examine the images of the seabed to detect targets and classify them 
as mine-like objects (MILCO) or non mine-like objects (NON-MILCO). Computer-aided detection (CAD), computer-
aided classification (CAC) and automatic target recognition (ATR) algorithms have been introduced to reduce the 
burden on the technical operator and reduce post-mission analysis time. This article describes a target classification 
solution using a DLNN-based approach that can significantly reduce the time required for post-mission data analysis 
during underwater reconnaissance operations.

Keywords:  Deep Learning Neural Network (DLNN); mine detection and classification; sonar imagery; Mine Countermeasure (MCM); 
Automatic Target Recognition (ATR

INTRODUCTION

In today’s era of increasing data and the proliferation of 
visual information, the field of computer vision has become 
a key technology for understanding and interpreting images 
and videos. Deep learning neural networks play an important 
role in this field. Deep learning neural networks (DLNNs) 
enable the automatic identification and recognition of 
targets or objects in an image or video stream. Automatic 
target recognition (ATR) modules have a wide range of 
applications in various fields, including but not limited to: 

Industrial Automation [1] (object recognition and tracking 
for quality control, inventory management, and robotic 
systems), Video Surveillance [2](surveillance systems 
automatically identifying and tracking objects of interest, 
such as individuals, vehicles, or specific behaviours, thus 
improving security and safety), Medicine [3],[4] (medical 
imaging systems), and Military and Defence [5] (military 
surveillance, reconnaissance and intelligence). 

This article addresses the task of using DLNN as a tool to 
improve maritime security by detecting the potential threat 
to shipping posed by UXO objects. Thousands of mines were 
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deployed in the Baltic Sea during the First and Second World 
Wars. Many of these still lie on the seabed and pose a real 
threat to shipping and the marine environment. The Baltic 
Marine Environment Protection Commission (HELCOM) 
reports that approximately 40,000 tonnes of munitions and 
chemical weapons were dumped into the water during the 
Second World War alone [6],[7]. Given this fact and the new 
threats arising from the war in Ukraine [8], where the Black 
Sea has been invaded by hundreds of mines dropped by both 
sides, there is a great need to intensify work on monitoring 
the water space and improving the tactics and techniques 
of this process. 

The designation of objects as Unexploded Ordnance 
has a significant role in maritime security management in 
particular. Awareness of the presence of a threat located on the 
seabed and the risk it poses allows, for instance, the rerouting 
of waterways for the safe transit of cargo and crisis response 
shipping, which is particularly important during armed 
conflicts. The correct classification of objects as UXO and the 
associated probability of classification allows for a reduction 
in the time taken to conduct mine countermeasure operations 
by determining which contacts to identify first using divers 
and remotely operated vehicles (ROVs), as well as those that, 
by their nature, should not pose a threat.

The research question addressed in this article is how 
effective a pre-trained DLNN-based ATR module can be 
for detecting and correctly classifying UXO in sonar images, 
and what level of assurance it provides to operators involved 
in mine countermeasure (MCM) operations, as well as the 
benefits of using graphics processing units (GPUs) instead of 
central processing units (CPUs) in the data analysis process. 
In order to correctly answer these questions, the best structure 
and parameters of the DLNN must be guaranteed after the 
learning process. The most promising pre-trained DLNNs 
are then used and the average values of training accuracy, 
verification accuracy and the average training time of a single 
network are presented. Fig. 1 presents the idea of the transfer 
learning process used in the conducted research. 

The following three classes of UXO objects are adopted 
in this study: Manta Shape Mine, Cylindrical Mine, and 
Spherical Mine. The NON-MILCO class is assigned to 
various objects not belonging to the first three classes. The 
images used to train the network were generated during live 
operations conducted by the Polish Navy in the Baltic and 
North Seas from 2015 to 2023. It should be emphasised that 

invaluable contributions to the process of building the UXO 
database used in the project were made by the crews of Polish 
Mine Countermeasure Vessels that participated in MCM 
operations.

The initial sections of the article describe the method of 
trajectory planning and analysing data from unmanned 
underwater vehicle (UUV) missions carried out to collect 
reliable and useful data for DLNN training. The subsequent 
sections compare the performance of different pre-trained 
neural networks in terms of the training accuracy, verification 
accuracy and average training time of each network. These 
sections also compare the performance of a single GPU and 
a single CPU, based on the computational performance of 
the DLNN. The final section summarises the results of the 
research and highlights the role of ATR modules in ensuring 
maritime safety by detecting and classifying underwater 
mines and other explosive hazards.

UUV-BASED SONAR DATA COLLECTION 
METHOD FOR DEEP LEARNING 

NEURAL NETWORKS 
The process of generating data, i.e. images of objects, is 

described in [10] as part of the sonar checking procedure. The 
above procedure starts with the deployment of a reference 
object on the seabed. The reference object or target’s shape, 
size and material should correspond with the actual mine 
threat. Once the object is deployed on the seabed, the 
operator should plan and evaluate the mission according to 
the trajectory shown in Fig. 2.

Fig. 2. The mission plan and evaluation focused on the data collection process - 
Courtesy of 13 MCM Squadron

Fig. 1. Pre-trained DLNN transfer learning [9]
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The mission plan should include the ability to record 
the reference target across the entire spectrum of sonar 
coverage, both in close proximity to the sonar transducer 
and at maximum range. Cross-path patterns with a 45-degree 
offset are recommended, in order to obtain multiple path 
orientations and present the target from different perspectives. 
This is particularly important when creating a target database 
in an area with a varied and undulating seabed (Fig. 3).

Fig. 3. Seabed projection on sonar image registered by EDETECH sonar 
for angles 0° and 90° - Courtesy of 13 MCM Squadron

Detections should only be specified for one type of object, 
e.g. a special type of mine. For one object, it is possible to 
obtain a limited number of detections due to the planned 
track spacing. Fig. 2 shows that it is possible to obtain eight 
detections for each target within the specified range beam. 
Due to the drift of inertial navigation system (INS) accuracy 
over time, it is possible to obtain more than eight detections 
within a certain range and this situation must be taken into 
account [10]. 

Once the vehicle has been recovered and the mission 
data has been downloaded, a detailed analysis focusing on 
object detection and classification should be carried out. The 
registration of detected objects, together with the background, 
in images of similar resolutions and dimensions is important 
for the construction of the ATR module (Fig. 4). 

Fig. 4. Manta shape object on sonar image covering an area of 10 x 10 m - 
Courtesy of 13 MCM Squadron

For future operations, it is important to maintain 
a standard for numbering and describing images. Each object/
image should then be assigned to a class, based on which 
DLNN will assign them to UXO or NON-MILCO objects. 

Fig. 5 shows the objects assigned to four classes: Cylinder, 
Manta, NON-MILCO and Spherical.

Fig. 5. Images assigned to four classes: Cylinder, Manta, NON-MILCO 
and Spherical

SONAR DATA COLLECTED FOR DEEP 
LEARNING OF NEURAL NETWORKS 

Due to the nature of the research environment and the risks 
associated with the verification of UXO objects found in the 
marine environment, there is a very narrow and elite group 
of individuals and institutions with data that can be used to 
train neural networks and build algorithms to automatically 
identify objects in the underwater domain. This group is 
largely populated by navies operating in waters with a history 
of mine warfare. Given that a selected pre-trained DLNN has 
to be learned from data from a single sensor (sonar) operating 
on a single operating frequency, that also defines the range 
of the sonar technology, building an automatic detection 
and classification module is a time-consuming process. 
A range of dangerous objects [11] recorded during live mine 
countermeasure operations were used in the research (Fig. 6). 

Fig. 6. German mines from World War II on sonar image [12] - Courtesy of 
13 MCM Squadron

Due to limited data on the actual mine threat and the 
required accuracy of DLNN training, the study also used 
reference objects (i.e. Manta, Murena, Mk16 training mines) 
to simulate the actual threat (Fig.7). 
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Fig. 7. Training mines detected on sonar images in sequence: Manta [13], 
Murena, Mk16 - Courtesy of 13 MCM Squadron

As part of the research, the following images were 
generated using the Gavia UUV system, equipped with 
EDGETECH side scan sonar: 431 cylindrical objects, 537 
Manta shape objects, 105 Spherical objects (mainly M-08 
and M-12 mines) and 638 NON-MILCO objects. These 1,711 
images represent the number of independent sonar images, 
by which it should be understood that, for one object located 
on the seabed, it is possible to generate several to several 
dozen sonar images according to the methodology proposed 
in the article. In the study, each image was generated during 
an independent vehicle run. It should be emphasised that the 
collection of several images of dangerous or training objects 
takes several hours to several days of research, depending 
on the characteristics of the UUV used. Therefore, the idea 
and research discussed in this article will continue, in order 
to obtain satisfactory results for automatic object detection 
and classification. 

USING PRE-TRAINED DLNNS 
FOR UXO CLASSIFICATION

Pre-trained DLNNs are neural network models that have 
been trained on large datasets for specific tasks, such as image 
classification. These models have learned to recognise patterns, 
features and representations in the data, making them very 
valuable for a wide range of applications beyond their initial 
training task. In the context of UXO classification, pre-trained 
DLNNs can use their learned knowledge to distinguish UXO 
from non-hazardous objects. DLNN processing requires 
resizing each image to the dimensions of the first layer. The 
size of the input image for each neural network analysed is 
shown in the last column of Table 1 [14]. 
Tab. 1. DLNN Parameters [14]

Neural Network Depth Size 
(MB)

Parameters 
(Millions)

Image Input 
Size

squeezenet 18 5.2 1.24 227-by-227

googlenet 22 27 7.0 224-by-224

Neural Network Depth Size 
(MB)

Parameters 
(Millions)

Image Input 
Size

inceptionv3 48 89 23.9 299-by-299

densenet201 201 77 20.0 224-by-224

mobilenetv2 53 13 3.5 224-by-224

resnet18 18 44 11.7 224-by-224

resnet50 50 96 25.6 224-by-224

resnet101 101 167 44.6 224-by-224

xception 71 85 22.9 299-by-299

places365-Googlenet 22 27 7.0 224-by-224

shufflenet 50 5.4 1.4 224-by-224

nasnetmobile * 20 5.3 224-by-224

alexnet 8 227 61.0 227-by-227

vgg16 16 515 138.0 224-by-224

vgg19 19 535 144.0 224-by-224

darknet19 19 78 20.8 256-by-256

darknet53 53 155 41.6 256-by-256

efficientnetb0 82 20 5.3 224-by-224

*nasnetmobile do not consist of a linear sequence of modules.

The research problem in this paper is to evaluate the 
performance of pre-trained DLNNs in classifying 1711 
images (1073 UXO images and an additional 638 images 
representing non-military objects) and 3422 images obtained 
using image data augmentation. Data augmentation plays an 
important role in enhancing the performance of pre-trained 
deep neural networks (DLNNs). This importance comes from 
the challenges of acquiring sonar data of UXO objects, which 
are often sparse for security reasons, and the rarity of such 
events. By applying data augmentation techniques on the 
limited available sonar data, we can effectively multiply the 
size of our dataset while maintaining its representativeness. 
This augmentation introduces changes in object orientation, 
scales and contextual conditions, which are essential for 
DLNN training to accurately recognise both UXO and 
non-military objects. In addition, the augmentation of 
sonar data serves to improve the generality of the model in 
different underwater environments and acoustic conditions. 
Simulating real-world scenarios through extensions such as 
rotations, translations, and reflections equips the DLNN with 
the adaptability needed to make informed classifications in 
unpredictable circumstances. Essentially, data augmentation 
enables the DLNN to achieve better classification results for 
UXO and non-military objects, even in the face of inherent 
difficulties in obtaining sufficient and representative sonar 
data for training.

Based on previous studies [15], the Adam method was 
chosen for testing due to its highest average accuracy 
and shortest training time. The criteria for evaluating the 
performance of DLNN were: (1) training and verification 
accuracy, (2) mini-batch loss and (3) the CPU/GPU 
computation time needed to classify objects with the highest 
accuracy. The comparison of pre-training time is important 
because it indicates the potential to use data collected during 
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the mission to train neural networks in real time. This means 
that algorithms are able to adapt and learn during the mission, 
using the current information. This allows them to respond 
quickly to changing conditions and needs, which is crucial 
in rapidly evolving environments.

The task of the DLNN was to classify underwater images 
into one of four object categories: (1) Cylinder, (2) Manta, 
(3) Spherical, and (4) NON-MILCO. This classification is 
related to the utilitarian aspect of the research, namely the 
ability to detect and classify the main types of mines and 
other UXO objects found in the Baltic Sea. It is estimated that 
mine warfare, intense during both World War I and World 
War II, introduced some 160,000 mines into the Baltic Sea, 
of which only 20% have been removed or destroyed in MCM 
operations [16].

All images contain one object to be classified, such as one 
type of mine or rock. They were taken in different waters (Baltic 
Sea and North Sea) under different conditions (e.g. salinity, 
temperature, and depth) but using a single EDGETECH 600 
kHz sonar frequency. It seems that it will be difficult to obtain 
an optimal solution for the deep neural network, taking into 
account the fact that operators may also have problems with 
the classification of the above images. A total of 70% of the 
images were randomly selected for training and the remaining 
30% were used for verification.

A comparison of 18 pre-trained DLNNs was carried out. 
The type of DLNNs tested and their results, as the average of 
30 trials of training accuracy, verification accuracy and time 
needed to train a single network using the CPU and GPU, 
are included in Tables 2 and 3.
Tab. 2. DLNNs evaluation on CPU (i7)
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squeezenet [17] 78.91 85.54 0:46
googlenet [18] 94.34 94.33 1:19
inceptionv3 [19] 99.22 96.48 5:15

densenet201 [20] 100.00 93.94 13:45

Warning: 
Graphics 
timeout 

occurred.

mobilenetv2 [21] 100.00 95.90 2:27

Warning: 
Graphics 
timeout 

occurred.
resnet18 [22] 100.00 96.87 1:19

resnet50 [22] 98.44 93.16 3:36

Warning: 
Graphics 
timeout 

occurred.
resnet101 [22] 100.00 96.48 9:52
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xception [23] 100.00 93.36 17:30

Warning: 
Graphics 
timeout 

occurred.
places365-Googlenet [24] 96.67 93.164 2:16
shufflenet [25] 100.00 96.44 1:05
nasnetmobile [26] 100.00 97.27 3:45
alexnet [27] 68.75 61.13 0:24
vgg16 [28] 52.54 48.63 9:16
vgg19 [28] 56.25 57.22 11:42 
darknet19 [29] 77.34 72.07 2:53

darknet53 [29] 90.00 84.77 13:09

Warning: 
Graphics 
timeout 

occurred.
efficientnetb0 [30] 97.66 96.67 4:53

Tab. 3. DLNNs evaluation on single GPU (RTXA3000)
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squeezenet 82.03 76.56 0:03
googlenet 96.88 91.99 0:07
inceptionv3 99.22 95.70 0:52
densenet201 100.00 95.70 2:43
mobilenetv2 99.22 96.48 0:21
resnet18 99.22 96.23 0:03
resnet50 99.22 95.89 0:38
resnet101 100.00 93.94 1:10 Warning: 

Graphics 
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xception 100.00 95.89 2:34
places365-Googlenet 85.16 79.10 0:05
shufflenet 100.00 96.68 0:05
nasnetmobile 100.00 96.48 0:54 Warning: 

Graphics 
timeout 

occurred.
alexnet 60.94 60.35 0:01
vgg16 56.67 48.24 1:02
vgg19 73.33 78.71 1:38
darknet19 80.00 81.05 0:18
darknet53 96.67 93.94 2:40
efficientnetb0 96.67 95.31 2:00 Warning: 

Graphics 
timeout 

occurred.
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DISCUSSION

The study aimed to evaluate the performance of pre-trained 
DLNN models in classifying images representing UXO 
objects and additional objects that do not pose an underwater 
threat to fisheries and marine users. Based on the test results 
given in Tables 2 and 3, and considering that the DLNN 
models were trained on a single PC (CPU i7) and a single GPU 
(RTXA3000), it can be concluded that a computing platform 
with multiple GPUs is suggested for optimal performance. 
The tests showed that a single GPU performed numerical 
tests almost 15 times faster than the CPU.

The results of this work can be used to verify and evaluate 
the performance of each network for the main task of UXO 
classification. The research clearly shows that, due to the 
limited access to sonar data associated with UXO objects, 
data augmentation techniques are essential for improving 
the performance of DLNN models. They give the models the 
ability to generalise across different underwater and acoustic 
conditions, which is crucial for accurate classification.

The obtained network verification accuracy (higher than 
90%) proved the effectiveness of using DLNNs pre-trained 
on sonar images for UXO classification. This can be further 
confirmed by analysing examples of the images that were 
misclassified.

Fig. 8. True vs predicted classifications – Shufflenet Confusion Matrix

Man-made objects in sonar images tend to have sharp 
edges and may be easier to grasp. Therefore, it is not surprising 
that the greatest errors in classification were made when 
distinguishing between reference objects, in the form of 
stones and rocks on the seabed, and Spherical mine types 
(Fig. 8). Most people also make mistakes when looking at 
these images. Looking at the processed images on the first 
convolutional layer, it is clear that the feature selected by the 
network is similar to what a human would select.

When comparing the networks, it should also be noted 
that, for some of them, satisfactory results were obtained in 
a much shorter time, i.e. after 15 epochs out of a total of 30 
(Fig. 9).

Fig. 9. ResNet101 Training Progress

The results of the research have practical applications 
in ensuring safety at sea through effective detection and 
classification of underwater objects, such as mines from World 
War I and World War II. Given the existing threats on the 
seabed, effective tools to automatically identify such objects 
are becoming increasingly important.

CONCLUSION AND FURTHER RESEARCH

The aim of this study was to present the results of a project 
focused on the use of a pre-trained DLNN for UXO object 
classification. This project developed a methodology for 
obtaining the data required to train DLNNs in the specific 
environment of the Baltic Sea. The authors believe that the 
results should help other researchers trying to use pre-trained 
DLNNs and suggest a way to collect data using UUV systems 
for this process.

These results provide an understanding that the choice 
of an appropriate DLNN model and data augmentation 
technique is crucial for the effectiveness of underwater object 
classification, especially for the classification of UXO objects 
in sonar images. Models such as ‘shufflenet’ (accuracy of 
96.44%) or ‘resnet18 (accuracy of 96.87%) have achieved high 
accuracy and short average training times, making them 
promising solutions for the implementation of automatic 
target recognition (ATR) systems. On the other hand, some 
models, such as ‘vgg16’ and ‘vgg19’, cannot be used effectively 
in related work, due to their low accuracy and up to ten times 
longer training times.

Our research provides a starting point for further research. 
This future research, planned by the authors, will be related 
to the use of deep networks to detect UXO objects, classify 
them correctly, identify them with additional sensors and 
then automatically build a risk map for ships moving in the 
area, according to the mapping tool shown in Fig. 10.
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Fig. 10. Risk Mapping Tool for units entering dangerous waters

Considering the difficulty of accessing sonar data for UXO 
objects, further improvements in models and augmentation 
techniques will help achieve even better classification results. 
With the further development of computer vision and machine 
learning, the future of ATR modules has great potential. 
The incorporation of deep learning architectures, such as 
convolutional and recurrent neural networks, can further 
improve the accuracy and reliability of object recognition. 
In addition, the fusion of data from multiple sensors, such as 
combining visual and sonar data, can improve performance 
in challenging environments.
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AbstrAct

The prediction of fuel consumption and resulting transportation costs is a crucial stage in ship design, particularly for 
conditions involving motion in waves. This study investigates the real-time fuel consumption of a container ship when sailing 
in waves. The overall ship performance is evaluated using a novel non-linear coupled hull-engine-propeller interaction 
model. A series of towing tank experiments for hull resistance in waves and propeller performance are conducted. The 
ship engine is mathematically modelled by a quasi-steady-state model equipped with a linear Proportional-Integrator (PI) 
governor. Various scenarios of shipping transportation are studied, and the resulting instantaneous fuel consumptions and 
their correlation to other dynamic particulars are demonstrated. Additionally, daily fuel consumption and fuel cost per 
voyage distance are presented. It is also shown that the controller can effectively adjust the fuel rate, resulting in minimum 
fuel consumption. The study concludes that there is no correlation between fuel consumption and the frequency of fuel 
rates. The present framework and mathematical model can also be employed for ship design and existing ships to predict 
the total required energy per voyage.

Keywords: Fuel consumption, Energy efficiency, Hull-Engine-Propeller interaction, Ship engine dynamics, Added resistance, Sea wave

IntroductIon

More than 80 per cent of all goods transferred are carried 
over the seas [1]. This results in the consumption of millions 
of tonnes of fuel every year, costing several million dollars. 
Higher levels of fuel consumption lead to more gas emissions. 
Additionally, the expense of shipping is generally governed 
by the fuel cost for large ships [2]. Therefore, accurate 
estimates of ship fuel consumption are required. Researchers 
widely investigate the prediction and reduction of ship fuel 
consumption. Generally, various methods can be categorized 
into three distinctive models consisting of white-box models 
(WBMs), black-box models (BBMs), and grey-box models 

(GBMs) [3]. In WBMs, or deterministic models, all parameters 
or determinants are known in advance. The most important 
parameters are hull resistance, characteristics of the propulsion 
system, weather conditions, and engine performance [4]. In 
contrast, BBMs, or machine learning models, are based on the 
onboard measurement of data during voyages. The system trains 
on data and becomes more precise with increased data input 
[5]. The primary apparatus of these models (WBMs and BBMs) 
is an artificial neural network [6]. The GBMs use some known 
parameters and start training with data recorded onboard, but 
are usually established on a statistical approach [7].

The fuel consumption of any vessel is dependent on all its 
operational parameters, such as ship speed, hull resistance, 

https://orcid.org/0000-0003-2735-4848
https://orcid.org/0000-0002-4796-9674
https://orcid.org/0000-0003-4989-8344


POLISH MARITIME RESEARCH, No 1/202486

draft, trim, loading condition, weather, and sea condition 
[8]. Once an accurate estimation of fuel consumption is 
acquired, different methods to reduce this consumption can 
be investigated. Shipping companies concentrate on two 
separate methods of reducing fuel consumption, either the 
design of new ships or retrofitting and operational techniques 
for existing ships. [9]. The former method, which requires 
more investment, investigates hulls with lower drag, lighter 
materials, hybrid engines with improved performance, etc. This 
method certainly has a stronger contribution to the reduction 
of fuel consumption compared to operational techniques for 
existing ships. However, this comes at a higher expense [10]. 
The latter method is available for all ships which are already 
built and come at a lower price. This method of reducing fuel 
consumption does not introduce any major modifications in 
the main ship systems and mostly emphasizes the optimal 
use of fuel onboard and voluntary and involuntary speed 
loss. These techniques include but are not limited to, slow 
steaming [11], weather routing [12], optimized speed [13], 
trim optimization [14], and voyage optimization [4]. Using 
these techniques usually increases the shipping time but 
reduces fuel consumption. The ship owner should always make 
a balance between shipping time and consumed fuel in total 
shipping expenditures. Moreover, there are other criteria, 
for example, general strength, that should be combined with 
energy efficiency to select the final solution [15].

Engine dynamics also have a  significant impact on 
fuel consumption. Larsen et al. [16] investigated different 
configurations of two-stroke, diesel-based machinery 
systems for large ships. They used uncoupled analytical 
models of the ship’s subsystems, such as engine dynamics, 
propulsion system, and hull resistance. Yin et  al. [17] 
designed an accurate real-time fuel consumption monitoring 
system based on the engine speed, its power, and the ship 
speed. A correlation between generated power and consumed 
fuel was established. A similar interesting study was also 
carried out by Sandvik et al. [18], with the results of their 
simulation found to be in reasonable agreement with 
onboard full-scale measurement of a cargo ship. Different 
determinants involving engine dynamics, fuel consumption, 
speed, position, and wind speed are measured on this ship. 
Degiuli et al. [19] showed that fuel consumption is increased 
for a container ship as a function of different speeds and 
wave frequencies. Engine or propeller dynamics were not 
included in this study. Tilling and Ringsberg [20] employed 
a 4-DOF (surge, drift, yaw and heel) model for the prediction 
of fuel consumption, which considers added resistance. The 
proposed model incorporates important determinants, but 
not as a coupled system. It is worth mentioning that the fuel 
pre-injection and injection processes and systems also have 
a significant influence on fuel consumption, particularly in 
unsteady states [21-23].

Most of the mentioned studies cannot simulate the ship 
dynamics and sea conditions as an integrated system. Thus, 
the suggested models cannot be easily studied if one of the 
determinants is changed or generalized for use in other ships. 
Therefore, their applications are restricted and are also difficult 

to develop further. To remove this weakness, the present 
research focuses on establishing a white-box, or deterministic, 
model, for the prediction of fuel consumption in displacement 
ships, with a further goal of reducing this fuel consumption 
to meet the UN’s sustainability goals (items 7, 12, and 13) [1]. 
The ship dynamics and sea conditions are simulated through 
a non-linear coupled hull-engine-propeller interaction model 
and all influencing parameters are investigated simultaneously. 
Ship motion in waves is of more importance due to higher 
resistance and therefore higher fuel consumption, rather than 
motion in calm waters.

ForMulatIon

The main determinants in this study are hull geometry, 
engine dynamics, propeller performance, and sea conditions. 
Although it is complicated to capture this coupled problem in 
an exact manner, it can be presented with some assumptions 
[24] using the following 1-DOF (surge) system of equations:

   Tn(t) – RC(u(t)) – RA(u(t)) = (Δ + xu.)u. (t)
     (1)

    QE(t) – QP(t) = (IP + IPa + IE + IS)ω. (t)

where RC, RA, Tn, Δ, and xu. are the total ship resistance in 
calm water, as a function of surge speed, u(t); mean added 
resistance; net generated thrust; ship mass; and the ship 
added mass, respectively. The second equation is the engine-
propeller interaction stated as the law of angular motion 
where QE(t), QP(t), IP, IPa, IE, IS, and ω are the delivered engine 
torque; required propeller torque; propeller moment of 
inertia; propeller added moment of inertia; engine moment 
of inertia; shaft moment of inertia; and shaft angular speed, 
respectively. The proposed system of equations introduces 
five sets of determinants:

1.  Ship resistance (both in calm water and sea waves);
2.  Propeller characteristics (thrust and torque);
3.  Engine dynamics (torque, angular velocity, and controller);
4.  Vessel specifications (moments of inertia, mass, and  

added mass);
5.  Ship dynamics (surge speed).
All of these determinants are time-dependent variables, 

excluding vessel specifications. Thus, the solution of this system 
of equations results in instantaneous ship response. 

shIp resIstance

When ships sail in waves, the total resistance increases by up 
to 15–30% compared with calm water sailing [25]. The added 
resistance considerably influences the ship’s motion and its 
attainable speed, resulting in an increased power requirement 
and higher fuel consumption. The proposed governing system of 
equations are capable of estimating additional fuel consumption 
due to added resistance. The ship resistance in calm waters can be 
computed using different formulas, such as those recommended 
by International Towing Tank Conference (ITTC). However, 
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the calculation of the added resistance is not straightforward 
because of its dependency on several influencing parameters, 
such as ship speed, hydrostatic trim, wave frequency, heading 
angle, wave period, draft, radii of gyration, etc.

To obtain an accurate estimation of added resistance, a series 
of model test experiments are conducted in a towing tank for 
a Series 60 with CB = 0.6. The added resistance of the model is 
computed with a known value of calm water resistance using 
the following equation:

RAm (t) = RTm (t) – RCm (t)     (2)

and usually presented as time-averaged added resistance, R̂ Am, 
or mean added resistance:

R̂Am = 
1

ΔT∫t1

t2RAm dt      (3)

Here, the subscripts A, m, T, and C stand for the added 
resistance; model; the total resistance; and calm water resistance, 
respectively. The full-scale ship added resistance is related to the 
measured value for model by applying Froude’s law of similitude:

RAs (t) = λ3 × RAm (t)     (4)

Hence, RAs and λ are the ship added resistance and model 
length scale, respectively. Table 1 indicates the setup of the 
model tests.

Tab. 1. Configuration of the model test experiments

Model specification

Hull offset CB LOA λ

Series 60 0.6 4.57 m 1:40

Wave dynamics

Heading Height Period Length

180 deg 8 cm 1.6 sec 4.0 m

The dominant parameter in added resistance studies is 
the characteristic wavelength, which is defined as the ratio 
of the wavelength to the ship length. In practice, this is about  
0.8–1.1 for long waves [26]. This non-dimensional length is set 
to λ/L = 4/4.57 = 0.88 for the present experiments. Resistance, 
heave and pitch motions, and wave profile are recorded in each 
run. The measured data is scaled using the law of similarity 
for a real full-scale ship with the main particulars presented 
in Table 2.

Tab. 2. Main particulars of the full-scale ship

LOA Beam Draft CB Speed

Δ

182.9 [m] 24.4 [m] 9.8 [m] 0.6 23.8 [Kn] 26245.4 [m3]

Fig. 1 depicts the calm water resistance and time history 
of the added resistance for the fullscale ship, scaled from the 
measured data with a length scale of 1:40.

Fig. 1. Full-scale ship resistance, (a) variation of calm water resistance  
at different surge speeds, (b) time history of the added resistance

propeller characterIstIcs

Additional important determinants are the propeller 
dynamics, including shaft angular velocity; propeller thrust; 
and propeller torque. A  series of experiments has been 
conducted for the measurement of the open water performance 
of the selected propeller. The selected propeller is a fully 
submerged 5-blade B-Wageningen with a diameter of 25 cm. 
The experimental setup and measured characteristics are 
shown in Fig. 2.

Fig. 2. Propeller open water performance, experimental setup  
and measured data

The thrust coefficient, KT, torque coefficient, KQ, and open 
water performance, η0, are measured for different advance 
numbers, JP. Table 3 introduces the geometrical specification 
of the full scaled propeller based on the selected length scale 
of 1:40. 

Tab. 3. Specification of full-scale propeller

Geometry Type Diamete Blades Area 
ration

Pitch 
ration

B-Wageningen FPP 7.6 m 5 0.58 1.00

To compute the generated thrust of the full-scale propeller, 
the required torque, and corresponding efficiency, one can use 
the following set of equations:

Tn = (1 – t) KT ρω2
p D4

P     (5)

QP = KQ ρω2
p D5

P      (6)

calculated at different advance numbers, JP, 
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QE(S)
Xf(S)  = KE

1+TES e–τs     (11)

The recommended model requires that the time constant of 
the engine is higher than the time constant of the exciting force 
fluctuation, e.g. added resistance. Therefore, the engine can be 
effectively simulated using this quasi-steady model and can be 
directly included in a general system of equations as follows:

   Tn(t) – RC(u(t)) – RA(u(t)) = (Δ + xu.)u. (t)

   QE(t) – QP(t) = (IP + IPa + IE + IS)ω. (t)
 (12)

    TE Q
. 

E (t – τ) + QE (t – τ) = KE Xf (t)

Regarding the selected full-scale ship and the corresponding 
propeller, a  MAN-B&W  8S65ME-C8.5 low-speed diesel 
engine is chosen as the prime mover with a Service Maximum 
Continuous Rating (SMCR) of 19,433 kW at 92.8 RPM. The 
steady state specification of the selected engine is publicly 
accessible [24].

controller implementation
Engines exhibit an immediate response as feedback of 

any changes in the rate of injected fuel, even for rapid and 
small changes. Thus, the primary component which controls 
diesel engines is the fuel rate. The fuel rate in diesels engines 
is controlled using different techniques, but primarily with 
speed governors. The selected engine in the present study is 
also assumed to be equipped with a governor. Different control 
strategies are available for controlling the diesel engine. Captains 
usually prefer to maintain a constant shaft speed while sailing. 
Thus, the controller is designed based on this strategy, with 
a schematic of the control system block diagram shown Fig. 3. 

The controller receives a set-point signal which is defined 
as the shaft speed corresponding to the steady state operating 
condition of the engine, ω–. This set-point forces the engine 
to continuously operate at its Maximum Continuous Rating 
(MCR) condition regardless of the sea conditions. The controlled 
signal, ω, is the instantaneous shaft speed and is designed as the 
feedback signal. Thus, the error signal, E, is defined as 

JP = u(1–w)
ωpDP

     (7)

Here, t and w are thrust deduction and wake fraction factors, 
respectively.

engIne dynaMIcs

The key set of determinants in this research are the diesel 
engine dynamics. The dynamics of marine diesel engines has 
been studied using different models with various levels of 
detail, such as zero-dimensional, steady-state delayed response, 
mean value first principle (MVFP), and discrete-events models 
(DEM) [27, 28]. A complete understanding of the diesel engine 
performance needs adequate knowledge of the in-cylinders 
thermodynamic processes. However, once the diesel engine 
is investigated as a subsystem of a larger system, i.e. in a ship, 
an in-cylinder model is neither practical nor necessary due 
to unsatisfactory real-time capability and inappropriate 
adaptability with the unsteady operating conditions [29]. Quasi-
steady delayed engine dynamics are employed in this study, 
which is governed by the following differential equation [30]:

TE Q
. 

E (t – τ) + QE (t – τ) = KE Xf (t)   (8)

where TE, τ, KE, and Xf are engine time constant; response 
delay; gain factor; and fuel flow rate in kg/s, respectively. The 
time constant reflects the inertial behaviour of the engine 
for generating torque after receiving the necessary fuel for 
combustion and is approximated as 90% of the time between 
two successive ignitions in one cylinder.

TE = 0.9 · 2π
ωE

      (9)

The time delay is determined as half of the time needed for 
two successive ignitions:

τ = 1
2  · 2π

ZEωE
       (10)

where ωE and ZE are angular shaft velocity and the number of 
engine’s cylinders, respectively. The transfer function of the 
engine dynamics is directly used in the speed control system. 

Fig. 3. Controller block diagram
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E = ω– – ω       (13)

The obtained error signal is then amplified and filtered for 
noise reduction. The processed error signal is fed into the speed 
governor. The present governor is modelled as a proportional-
integral type (PI-action) controller based on the concept of the 
common diesel engine governors [31]. A proportional-integral-
derivative (PID) block with zero derivation gain is employed for 
the simulation of the governor’s performance. The proportional 
and integrator gains are tuned using a varied Ziegler-Nichols 
method [32] to account for different sailing scenarios. The 
output of the governor block is the instantaneous fuel rate of the 
engine. According to this produced fuel rate signal, the engine 
performance is adapted for reducing the error signal at each 
time step. To simulate the ship performance as an integrated 
system in general, other subsystems apart from the engine 
and its controller should also be modelled. These subsystems 
involve the hull resistance, propeller characteristics, and the 
interconnecting signals. The architecture of the subsystems and 
the coupling techniques are determined using the governing 
system of equations and related subsystem formulas as depicted 
in control block diagram of Fig. 4.

The ship resistance and propeller characteristics are evaluated 
using given data at the current time step. These characteristics 
stand as the initial conditions for estimation of the engine 
dynamics. The results are specified as the input signals of the 
controller. The controller computes the required fuel rate based 
on the value of input and error signals. Once the fuel rate is 
computed by the controller, this rate is fed back to the engine. 
This loop continues at each time step to reach a converged 
result. Computation of the engine torque is performed at two 
other subsystems defined as “Engine Dynamics” shown in 
Fig. 4. At the first step, the steady torque of the engine, e.g. 
quasi-steady torque, is interpolated from the engine steady-
state performance. This quasi-steady torque is then called by 
another internal subsystem to evaluate its unsteady value based 
on Eq. (10) as depicted in Fig. 5. 

results and dIscussIons

To investigate the performance of the governor, two 
simulations were conducted. The first involved activating the 
governor so the fuel rate is determined by the controller and 

Fig. 4. Block diagram of the whole ship system established in Simulink

Fig. 5. The internal subsystem of computing unsteady engine dynamics
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in the second the governor was deactivated with manually 
forced fuel rates. 

governor actIvated

The simulations are systematically carried out for separate 
scenarios, as summarized in Table 4. Fig. 6 indicates the results 
of the simulations for Scenarios #1 and #3.

Tab. 4. Different scenarios of fuel consumption at the present study

Scenarios Sea conditions
Engine 

operating point 
(OP)

Objective

#1 Calm 100% Max. speed

#2 Calm 10%~100% Ship 
performance

#3 Calm–Waves 100% Sailing in waves

#4 Calm–Waves–Calm 100% Controller 
response

#5 Calm–Waves–Calm 80% in waves Speed reduction

#6 Calm–Waves–Calm Varies Sustain speed

#7 Calm Varies Max. 
acceleration

#8 Waves Varies Governor 
performance

Fig. 6. The overall ship response for scenarios #1 and #3

In the first scenario indicated by the dashed line in Fig. 6, the 
ship starts with an initial speed of 8.9 m/s and attains a steady 
state speed of 11.7 m/s. More than 95% of this speed increase 
occurs in the first 200 seconds. This is clear evidence of the 
controller performance. The ship consumes about 1.1 tonnes 
of fuel at the rate of 0.88 kg/s, i.e., 76 MT/day. The ship meets 
the waves at a speed of 11.74 m/s in the third scenario after 
500 seconds of sailing in the calm waters and the speed reduces 
to 11.4 m/s 300 seconds later. This speed reduction is called 
involuntary speed reduction. Fuel consumption is essentially 
identical in both scenarios because of the identical OPs. Fig. 7 
shows the results obtained from Scenario #2 when investigating 
ship performance under different operating conditions.

The ship speed decreases from 11.7 m/s to 6.1 m/s when the 
operation point reduces from 100% to 10%. Furthermore, the 
engine power and shaft speed reduce from 19 MW to 1.9 MW 
and 92.8 RPM to 43.1 RPM, respectively. Fig. 8 illustrates the 
performance of the engine at different operating conditions.

Fig. 7. Overall ship performance for different engine operating points.  
a) time history of ship speed, b) instantaneous fuel rate, c) overall consumed  

fuel, and d) variation of ship speed and fuel rate versus different  
operating points. The operating points reduce from 100% to 10%  

downward in figures a, b, and c

Fig. 8. Engine performance at its different operating points

Fig. 9. shows the response of the controller for different 
sea conditions in the fourth scenario. The results show that 
the speed of the ship before and after the waves is the same, 
indicating the successful trace of different sea conditions by 
the controller.

Fig. 9. Controller response for different conditions studied in Scenario #4

The stimulated structural load on the ship hull during sailing 
in waves is a function of the ship speed. Therefore, captains 
commonly decide to decrease the ship speed in waves, usually 
between 0.5 to 4 knots slower than the service speed, in a process 
known as voluntary speed reduction. This prevents excess loads 
on the hull. Scenario #5 studies a 20% reduction in engine 
operating point once the ship encounters waves which cause 
a 0.5 m/s speed reduction, as shown in Fig. 10. To compare 
the performance of the controller between Scenarios #3 and 
#5, the fuel rates are also reported. The patterns of both rates 
are similar but with different magnitudes. 
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Fig. 10. Simulation results of Scenario #5 defined as voluntary speed reduction  
in waves compared with the results of Scenario #3. a) Ship speed,  

b) consumed fuel, and c) fuel rates reported for a typical interval of 20 seconds

In Scenario #6 the ship is initially moving in calm waters 
and then in waves. The controller’s mission is to increase the 
operating point so that the ship’s speed is constant across 
travelling in waves and in calm waters, as presented in Fig. 11. 
This shows that the ship speed can be sustained by increasing 
the engine power by just 4%. 

Fig. 11. Sustaining the ship speed in waves introduced in Scenario #6

Fig. 12 shows the simulation results for Scenario #7. Two 
separate accelerating and decelerating manoeuvres with 
the same extremums are defined. The results show that the 
ship speed increased from 6.1 to 11.74 m/s in 300 seconds 
with an acceleration of about 0.02 m/s2. However, the ship 
deceleration takes three times longer with a deceleration of about  
0.006 m/s2. This scenario is a classic study of a controller 
response to a step function.

Fig. 12. Evaluation of the ship performance in successive accelerating motions

The voyage distance for different scenarios can be used for 
the estimation of fuel consumption as a function of travelled 
distance, which is defined by the parameter Γ and is depicted 
in Fig. 13. Once the fuel price per unit volume and the voyage 
distance are known, the crucial fuel cost of shipping can be 
readily estimated.

Fig. 13. Instantaneous values of  for different shipping scenarios

governor deactIvated

The governor is deactivated in the second series of the 
results. The fuel rates are set to predefined profiles to find 
any possible reduction in fuel consumption while moving in 
waves. These rates include constant, sinusoidal, and square 
rates. Fig. 14 displays the first attempt. Here, the fuel rate is 
defined as a constant function, with the time averaged rate of 
0.902 kg/s used, as obtained from Scenario #4. The solver uses 
this rate as an initial value and changes it to find the same ship 
speed in waves. Fig. 15 depicts the results of this simulation 
via the reported fuel rates. The solver finds the constant value 
of 0.905 kg/s to attain the same speed, namely 0.4% more than 
timeaveraged value. 

Fig. 14. a) Instantaneous fuel-rate for scenario #4 and its time averaged  
in waves, b) the magnified view

Fig. 15. Comparison of fuel rates, a) controlled by governor,  
b) forced constant rate

The results show that the governor can be completely turned 
off during motion in waves. However, it is crucial to note that 
this does not imply that the controller can be removed from 
the system. Without a proper controller, the fuel consumption 
is dramatically increased under different ship operating 
conditions. A synchronized presentation of the fuel rate and the 
total resistance is illustrated in Fig. 16. Once the controller finds 
any local oscillation is the resistance, it immediately changes 
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the fuel rate to keep the propeller shaft speed constant. The 
controller responds to the resistance excitation with a very 
short time delay, as defined by Eq. (12). 

Fig. 16. Synchronized representation of time histories of the fuel rate  
computed by the controller and the total resistance

Other rates with sinusoidal and square behaviour are also 
generated with the same peaks and the same time-averaged 
rate according to those shown in Fig. 14. However, different 
frequencies are used to find any possible correlation between the 
fuel consumption and the frequencies, as presented in Fig. 17. 
The computed fuel consumption is normalized using the steady 
state fuel consumption that is evaluated at the end of motion 
in waves in scenario #4, defined as η. It is shown that there is 
no correlation between these parameters. 

Fig. 17. Different forced fuel rates, a) Typical fuel rate profiles, b) normalized  
fuel consumption for forced periodic fuel rates with different frequencies

conclusIon

The overall ship performance, particularly real-time 
fuel consumption, is investigated using a new hull-engine-
propeller interaction model under different sea conditions. 
Various voyage scenarios are studied to identify any correlation 
between fuel consumption and ship dynamics. The results 
show that the employed controller successfully responds to 
different challenging scenarios with reasonable performance. 
Additionally, the benefit of a  constant forced fuel rate is 
illustrated in comparison with the high oscillating response 
of the governor during motion in waves. Voluntary and 
involuntary ship speed reductions in waves are introduced, 
and it is concluded that the proposed model can accurately 
simulate such speed reductions. Moreover, the capability of 
the recommended model and simulation framework to predict 
the instantaneous and total cost of consumed fuel per voyage 
is also noted. This work offers a practical tool which can be 

utilized in all stages of ship design and can be implemented to 
help manage the energy efficiency of existing ships.
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AbstrAct

The effects of heavy fuel oil and biodiesel blends on engine combustion and emissions were studied in a marine two-
stroke diesel engine. The engine was operated under propeller conditions using five different fuels with biodiesel blends of 
10% (B10), 30% (B30), 50% (B50), and sulphur contents of 0.467% low sulphur fuel oil (LSFO) and 2.9% high sulphur 
fuel oil (HSFO). Tests have shown that using a biodiesel blend increases the engine fuel consumption due to its lower 
calorific value. Heavy fuel oil has a high Polycyclic aromatic hydrocarbons (PAH) content, which leads to higher exhaust 
temperatures due to severe afterburning in the engine. A comparison of engine soot emissions under different fuel conditions 
was carried out, and it was found that the oxygen content in biodiesel promoted the oxidation of soot particles during 
the combustion process, which reduced the soot emissions of biodiesel. Compared to HSFO, B10, B30, B50 and LSFO, 
the soot emission concentrations were reduced by 50.2%, 56.4%, 61% and 37.4%, respectively. In our experiments, the 
soot particles in the engine exhaust were sampled with a thermal float probe. Using Raman spectroscopy analysis, it was 
found that as the biodiesel ratio increased, the degree of carbonisation of the soot particles in the exhaust became less 
than that in the oxygenation process, resulting in a decrease in the degree of graphitisation.

Keywords:  Low-speed engine; biodiesel; black carbon; Raman spectroscopy; degree of graphitisation

INTRODUCTION

Global warming is causing continuous melting of the Arctic 
glaciers, and although the opening of new Arctic shipping 
routes offers great convenience to international shipping, it 
poses a great threat to the Arctic environment at the same time. 
Black carbon (BC) emissions from international shipping vessels 
are the main source of BC in the Arctic, and these emissions 
have greatly accelerated the melting rate of Arctic glaciers [1]. 
Maritime shipping is a key component of the global economy, 
representing 80–90% of international trade [2]. In view of the 
current impact of BC from international ship emissions on the 

deteriorating ecosystem of the Arctic, there is an urgent need 
for new alternative marine fuels to reduce BC emissions from 
ships. With its high oxygen content, biodiesel can reduce the 
emissions of BC in the exhaust gas during engine operation, 
and can reduce carbon emission over the whole life cycle; it 
has therefore attracted attention from researchers as an ideal 
alternative fuel in the field of shipping.

Teams from many countries have studied the effect of biodiesel 
on engine performance. Huang et al. [3] investigated the effects of 
intake pressure and EGR ratio on the performance and emission 
characteristics of a diesel engine running on biodiesel-diesel 
blends (B20, B30 and B40) and pure diesel (B0). Khanjani [4] 
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et al. prepared different formulations of WFO biodiesel (made 
from waste fish oil) by ultrasound radiation, and used this WFO 
biodiesel to make emulsion fuel. Compared with the use of diesel, 
the engine torque decreased, the braking power decreased, and the 
brake fuel consumption increased. Nabi [5] et al. prepared three 
kinds of biodiesel mixtures and compared them with traditional 
diesel fuel; it was found that although the performance of the 
engine changed little, the combustion efficiency was improved. 
Zeńczak et al. [6] converted solid biomass into marine fuel by 
mechanical densification or pyrolysis, and described the results 
from the points of view of fire safety, environmental protection, 
rising liquid fuel prices and dwindling crude oil resources. The 
potential for fire hazards on board ships arising from the storage 
and transport of pellet fuels and the decomposition of pellet 
fuels due to high temperatures were also assessed. An et al. [7] 
carried out experiments on biodiesel with different blending 
ratios and ultra-low sulphur diesel under different loads, and 
found that biodiesel had a significant effect on the brake-specific 
fuel consumption and braking thermal efficiency of generators 
under partial load. Wang and Yao [8] and Changxiong et al. [9] 
investigated the effect of in-cylinder temperature and pressure of 
an engine at different mixing ratios for dimethyl ether (DME) and 
the oxygenated fuel polyoxymethylene dimethyl ether (PODE). 
Ghaemi et al. [10] presented a quick and relatively simple method 
of building a simulation model for a specific marine diesel engine 
based only on steady-state data, which are widely available in 
the publicly available data. These authors also described how to 
tune the model parameters for the simulation model and how 
to validate the results.

Biodiesel has good effects in terms of reducing BC emissions 
from engines. Its use can significantly improve combustion 
efficiency, as it releases the oxygen atoms in its chemical structure 
to supplement oxygen in fuel-poor areas [11]. Abboud et al. [12] 
found that when using oxygenated fuel, the reduction of soot 
emission was closely related to the oxygen content, while soot 
formation was related to the ester function groups in the fuel. 
The alkyl chain length of the fuel was shown to affect the soot 
characteristics, where longer alkyl chains showed lower soot 
reactivity. Lemaire et al. [13] found that the soot volume fraction of 
rapeseed methyl ester (RME) in a turbulent flame was about 16% 
of that of pure diesel oil. Du et al. [14] studied the pore structure 
and oxidation activity of biodiesel soot; these authors reported 
that the carbon-oxygen ratio of biodiesel soot was lower than 
that of diesel soot, and the porosity of biodiesel soot was higher. 
Zandie et al. [15] developed a mechanism Compact combined 
diesel-biodiesel-gasline kinetic mechanism (CDBG) for diesel-
biodiesel-gasoline mixtures, using a mixed Reynolds averaged 
navier strokes-Large eddy simulation (RANS-LES) model 
Detached eddy simulation (DES) model to simulate turbulence, 
in order to study the formation and emission of soot. The results 
showed that an increase in environmental oxygen concentration 
could improve the consumption of soot precursors and reduce 
both PAHs and soot formation. Sundararajan Rajkumar [16] 
proposed a multi-region phenomenological model to analyse 
the combustion and emission of biodiesel. The prediction results 
of the model were in good agreement with the measured data, 
and the maximum prediction error for soot emission was 18%.

Various methods are currently in use to analyse the composition 
of soot, such as Fourier transform infrared spectroscopy (FT-IR), 
transmission electron microscopy (TEM) and thermogravimetric 
analysis (TGA) [17]. Raman spectroscopy was first applied to the 
field of aerosol analysis by Raman in 1977, and was later widely 
used in the field of marine atmosphere analysis. Researchers 
used Raman techniques to study the morphology and size of 
soot from gas combustion in relation to fuel and added water 
[18]. The intensity of graphitisation of a material can be judged 
according to the height of the two characteristic peaks in the 
Raman spectrum, as there is a positive correlation between the 
degree of graphitisation and the microcrystal size of soot particles; 
that is, the higher the degree of graphitisation, the larger the 
microcrystal size [19]. 

Although scholars have extensively researched the combustion 
and BC emissions from biodiesel and heavy oil in an engine, 
few comparative studies have focused on combustion analysis 
of heavy oil and blended biodiesel in the same engine. There is 
also little research on the degree of graphitisation of BC produced 
from the combustion of different fuels in marine engines. In this 
study, the fuel consumption and exhaust temperature of a marine 
engine are monitored, and the effects of different fuels on the 
combustion performance of the engine are studied. The filter 
smoke count method (FSN) recommended by  International 
maritime organization (IMO) is used to measure the BC emission 
concentration of different fuels, and the effects of different fuels on 
the BC concentration in engine exhaust are analysed. The degree 
of graphitisation of black carbon in exhaust gas is characterised 
by Raman spectroscopy, and the effects of different fuels on the 
formation of BC particles in marine engine are explained.

TEST CONDITIONS AND TEST METHODS

EXPERIMENTAL STEPS

Tests were carried out on a marine two-stroke low-speed 
engine, as this type of diesel engine has been widely used for 
international operation of ships, Therefore the conclusions of 
this test can be a good response to the results of biodiesel use 
in ships on international voyages. In this study, the engine was 
operated in a propeller characteristic mode which also means 
that the engine speed varies with the engine load. The engine 
parameters are shown in Table 1.

Tab. 1. Engine parameters

Engine type MAN 6S35MEB

Engine stroke 2 stroke

Engine speed 142 rpm

Cylinder bore 350 mm

Stroke 1500 mm

Torque 240 kN

Engine power 3570 kW

Charge type Exhaust gas turbine charge



POLISH MARITIME RESEARCH, No 1/202496

Blended heavy fuel oil with a high sulphur content has been 
the main fuel for international ships for a long time, as fuel oil 
makes up a large proportion of the operating costs. Hence, in 
order to better study the effects of biodiesel blending on engine 
performance and BC emission compared with heavy fuel oil, 
the fuels used in this experiment were marine heavy fuel oil 
with 2.9% high sulphur content fuel oil (HSFO), marine heavy 
fuel oil with 0.467% low sulphur content fuel oil (LSFO), and 
diesel oil blended with 10%, 30%, and 50% biodiesel by volume, 
denoted as B10, B30, and B50, respectively. The biodiesel used 
in this trial was refined from waste grease from the restaurant 
industry. Due to the high viscosity of heavy fuel oil at room 
temperature, it must be heated to 80°C in the fuel cabinet before 
use, and the heater in the line must be switched on to ensure 
good fuel flow. The physicochemical properties of the five fuels 
used in the test are shown in Table 2.

In this test, a Kistler cylinder pressure sensor (6613C) 
mounted on the engine cylinder head was employed 

to measure the cylinder pressure, and a  thermocouple 
temperature sensor installed in the engine exhaust pipe 
was used to measure the engine exhaust temperature. Fuel 
consumption was calculated using an inlet and return oil 
mass flow meter, which was installed in the engine oil supply 
unit. Of the current BC testing techniques, the Filtered Smoke 
Number (FSN) method is the one considered more applicable 
to marine engine testing. The BC concentration of the engine 
at 25%, 50%, 75%, and 100% loads with different fuels was 
measured using AVL415 in these tests. A copper tube and 
a vacuum pump were used to sample the BC particles in the 
engine exhaust during the test. According to EPA regulations, 
the sampling temperature needs to be maintained at 55±3°C 
to avoid particulate loss due to coalescence of BC particles 
and cold-wall adherence during the sampling process. A 47 
mm quartz fibre optic filter (filtration accuracy 0.3 μm) was 
used for a sampling time of 60 min at a flow rate of about 
90 l/min. To prevent the influence of moisture in the air on 

Fuel type LSFO HSFO B10 B30 B50

Density (20°C) kg/m3 950.2 974.1 842.8 845.0 849.9

Viscosity (40°C) mm2/s 122.3 331.2 3.267 3.283 3.437

Flash point °C 73.0 85.0 77.0 79.0 82.0°C

cetane index / / 53.0 53.2 53.5

Polycyclic aromatic hydrocarbon (PAH) % (m/m) 11.2 11.9% 1.0% 0.9% 0.7%

Fatty acid methyl ester content % (m/m) / / 15.3 29.5 45.3

Net calorific value MJ/kg 41.080 40.068 41.697 41.037 40.236

Sulphur content % (m/m) 0.467 2.91 / / /

Fig. 1. Layout of the test equipment

Tab. 2. Fuel composition analysis
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Effects of biodiesel on engine cylinder pressure
Fig. 2 shows the cylinder pressure at engine runing in 75% 

rated engine load. It can be seen that an increase in the biodiesel 
blending ratio causes the pressure in the engine cylinder to 
increase, and that the pressure of blended biodiesel is higher 
than that of heavy oil. Specifically, the maximum pressure in the 
engine cylinder is 1.2% higher when running on B50 compared 
to B10. The main reason for this is the increase in the oxygen 
atom content of the fuel as the biodiesel blend ratio increases, 
which accelerates the combustion rate in the cylinder. The 
piston moves up to the top stop and then starts to move down, 
and the faster combustion rate also leads to a higher pressure 
in the cylinder. Due to the high viscosity of heavy oil, poor 
atomisation leads to relatively slow combustion, which causes 
the rate of increase in the in-cylinder pressure to decrease, as 
can be seen from Fig. 3. In addition, this causes the pressure 
in the cylinder to decrease.

Fig. 2. Cylinder pressure at 75% engine load

Fig. 3. Rate of rise in cylinder pressure at 75% engine load

Effects of biodiesel on engine thermal efficiency
Thermal efficiency is a metric of the efficiency of the engine 

in terms of converting the chemical energy of the fuel into 
useful work. The energy loss during engine operation not 
only depends on the engine speed but also varies with the 
combustion characteristics of the fuel. From the variation in 
thermal efficiency with load for three different biodiesel blends 
in Fig. 4, it can be seen that increasing the biodiesel content 
reduces the calorific value of the blended fuel, and more fuel 
must be injected to meet the set load of the engine under the 
same engine operating conditions. Under the same injector 
conditions, an increase in the amount of injected fuel can 
lead to problems such as poor atomisation, which reduces the 

the samples, the samples were stored in a desiccator after 
sampling. The BC particles produced by the combustion of 
different fuels were monitored using a Raman spectrometer. 
The experimental setup is illustrated in Fig. 1.

UNCERTAINTY ANALYSIS

Uncertainty affects the reliability and confidence of the test 
results. The uncertainty of the measurements made by the 
equipment used in the test is shown in Table 3.

Tab. 3. Uncertainty in measurement equipment

Parameter Range Uncertainty(%)

Speed (r/min) 0–150 ±1

Flow rate of fuel (kg/h) 0–1800 ±0.1

Exhaust temperature (°C) 0–500 ±0.5

Black carbon (FSN) 0–10 ±2

Cylinder pressure (bar) 0–250 ±0.2

CALCULATION OF BC AND ENVIRENTAL 
CONDITIONS

The formula used to calculate the BC concentration was [20]:

ρ = 1
0.405 * 5.95 * FSN * e0.38FSN   (1)

where ρ is the concentration of BC (mg/m³) and FSN is the 
smoke value.

When conducting marine engine bench tests, the laboratory 
environment needs to be judged by the parameter fa.The 
equation used to calculate the laboratory environment was [21]:

fa = (99
Ps

)0.7 * (298
Ta )1.5      (2)

where Ta (°C) is the absolute temperature of the intake air and  
Pa (kPa) is the dry air pressure.

The marine engine exhaust emission limits and measurement 
methods specify that the calculated value of fa for the laboratory 
environment should be between 0.93 and 1.07 in order to be 
considered as meeting the requirements of the marine engine 
test [21].

RESULTS AND DISCUSSION

EFFECTS OF BIODIESEL ON ENGINE 
PERFORMANCE

Biodiesel is an alternative fuel that is typically converted from 
vegetable oils or animal fats. It has different physicochemical 
properties from traditional petroleum diesel, and therefore has 
an impact on engine performance and in-cylinder combustion 
when burned in the same engine. This section analyses the effects 
of five different fuels on engine performance and in-cylinder 
combustion during the combustion process in the engine.
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thermal efficiency of the engine. Although HSFO and LSFO have 
higher viscosities than biodiesel and are heated during use, their 
higher PAH content results in more incomplete combustion 
and therefore lower thermal efficiencies.

Fig. 4. Engine thermal efficiency of different fuels under different loads

Effects of biodiesel on fuel consumption
The fuel consumption rate is an important indicator of fuel 

economy. Fig. 5 shows the fuel consumption rate of the engine 
using B10, B30, B50, LSFO and HSFO, for varying loads. It 
can be seen that the fuel consumption rate increases with the 
percentage of biodiesel blend. From a comparison of the average 
fuel consumption of the engine for each fuel at the four loads, it 
can be found that the fuel consumption rates for B10, B30 and 
LSFO compared to HSFO decrease compared to HSFO by 0.6%, 
0.4% and 1.2%, respectively, and the fuel consumption rate of 
B50 increases by 1.7%. This is mainly the result of one increase 
the other decreases between the calorific value of the fuel and 
the injection and combustion of the fuel in the cylinder. The 
calorific value of the fuel is an important factor affecting the fuel 
consumption of the engine, and under normal circumstances, 
higher calorific values tend to be associated with lower fuel 
consumption rates. The atomisation and combustion of the 
fuel in the engine cylinder are also important factors affecting 
the fuel consumption, as a good combustion process will also 
reduce the engine fuel consumption. Of the fuels considered 
here, B10 has the highest calorific value, and although B50 has 
more oxygen atoms to promote combustion, the calorific value 
of the fuel dominates. Compared to HSFO and LSFO, B10 has 
a lower content of polymer PAHs, which ultimately results in 
a lower fuel consumption. 

Fig. 5. Engine fuel consumption rates for different fuels at different loads

Effects of biodiesel on engine exhaust temperature
The engine exhaust temperature is a further important 

indicator of the combustion process in the engine cylinder. 
Some researchers have suggested that biodiesel gives a better 
combustion process in the engine due to its higher oxygen 
content, which leads to higher exhaust gas temperatures; 
however, the opposite conclusion was reached in this study. 
From a comparison of the engine exhaust temperatures at 
different biodiesel blends in Fig. 6, it can be seen that the engine 
exhaust temperature slightly decreases with an increase in the 
biodiesel blend. This may be due to the lower calorific value of 
biodiesel, which gives it a lower temperature for the combustion 
process in the cylinder, resulting in a lower engine exhaust 
temperature. A comparison of the engine exhaust temperatures 
of heavy fuel oil and biodiesel in this experiment shows that 
the engine exhaust temperature is slightly higher than that of 
biodiesel blended with heavy fuel oil. This may be due to the 
fact that heavy oil contains more polymeric PAHs, which are 
difficult to burn, meaning that the combustion time of heavy oil 
is longer than that of biodiesel blend, resulting in higher engine 
exhaust temperatures. In this test, due to the high viscosity of the 
heavy oil at room temperature, the temperature was heated up 
to about 92°C during injection, whereas the blended biodiesel 
was not heated up, which may also have contributed to the 
relatively high exhaust temperature of the heavy oil.

Fig. 6. Engine emission temperatures of different fuels under different loads

IMPACT OF BIODIESEL ON BC EMISSIONS

The quality and composition of the fuel directly affect the 
degree of completeness of the combustion process. Low-quality 
or contaminated fuels may contain impurities or incomplete 
combustion products, which can increase the production of BC. 
To enable a better assessment of the BC emissions from blended 
biodiesel and heavy fuel oil, this section presents a comparative 
analysis of BC emissions and degree of graphitisation for 
different fuels.

Impact of biodiesel on the concentration  
of BC in engine exhaust

From Fig. 7, it can be seen that the concentration of BC in 
the engine exhaust decreases as the engine load increases, and 
reaches a minimum at 100% load; this is mainly due to the fact 
that with an increase in the engine load, the increase in the engine 
exhaust temperature promotes the oxidisation process of BC 
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particles, which reduces the concentration of BC in the engine 
exhaust. An analysis of the BC emissions of the engine when 
burning different fuels showed that the emission concentration 
was reduced by 50.2%, 56.4%, 61% and 37.4% compared to HSFO 
for B10, B30, B50 and LSFO, respectively. The BC concentration 
in the engine exhaust decreased as the biodiesel blending ratio 
increased. This was mainly because the oxygen content in the fuel 
increased with the biodiesel blending ratio, thus promoting the 
oxidation of BC during the combustion process and reducing the 
BC concentration in the exhaust emission. The main reason for 
the lower BC concentration in LSFO compared to HSFO may be 
that the heavy oil used in this test was a blend of residual oil and 
marine diesel fuel, and the HSFO had a higher residual oil content, 
which was more likely to lead to incomplete combustion and the 
formation of more BC particles during operation of the engine.

Fig. 7. Black carbon concentrations for different fuels under varying loads

Impact of biodiesel on the graphitisation of black carbon
Fig.  8 shows the Raman spectra for the BC particulate 

matter produced by engine combustion. The characteristics of 
the samples at wavelengths of 500–4500 cm−1 were scanned in 
the experiment. Two characteristic peaks near 1345 cm−1 and 
1594 cm−1 can be clearly seen from the Raman spectra of the 
particles. The peak at 1345 cm−1 is generally considered to be 
generated by the transformation of the local structural hexagonal 
symmetry of the crystals to a lower symmetry or to a loss of 
symmetry, and is known as the disordered peak or D-peak. 
The one located near 1595 cm−1 is known as the G-peak, and 
is generated by the phonon vibrational mode (the in-plane 
telescopic vibration of the sp2 hybridisation of carbon atoms). It 
can be used to characterise the structure of the ordered carbon 
layers in the particles.

Fig. 8. Raman spectrum for black carbon

In order to enable an analysis of the effects of different fuels 
on the degree of graphitisation of BC particles in the engine, The 
collected BC generated from different fuels were subjected to 
Raman detection, and the Raman spectrograms were smoothed 
for ease of analysis.., and all the spectral lines were normalised 
with reference to their respective G-peak peaks as a standard. 
The degree of graphitisation of the particles was characterised 
by the value of the G peak value divided by the value of the D 
peak IG/ID , with larger values indicating a lower and smaller 
ratios a higher degree of graphitisation.

Fig. 9. Degree of graphitisation of black carbon (IG/ID)

From Fig. 9, it can be observed that the degree of graphitisation 
of BC particles in the engine exhaust decreases as the biodiesel 
blending ratio increases, and the degree of graphitisation of the 
BC particles produced by the engine during the combustion of 
heavy oil is greater than for blended biodiesel. An increase in 
the biodiesel blending ratio decreases the IG/ID ratio, which is 
mainly due to the higher oxygen content of biodiesel promoting 
the oxidation of BC particles in the combustion process. The 
greater the number of oxygen atoms in biodiesel participating 
in the combustion, the more obvious the oxidation process 
compared to the carbonisation process of the fuel, and the 
lower the degree of graphitisation of the resulting particles. 
An increase in the maximum flame temperature also leads to 
an increase in the degree of graphitisation, which is positively 
correlated with the trend in the engine discharge temperature 
when burning different fuels, as shown in Fig. 6.

CONCLUSIONS

In terms of engine performance, an increase in the oxygen 
atom content of the biodiesel blends leads to faster in-cylinder 
combustion, resulting in a 1.2% increase in maximum in-cylinder 
pressure with B50 compared to B10. The thermal efficiency of 
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the fuel and the fuel consumption of the engine are determined 
by both the calorific value and the combustion characteristics 
of the fuel. Of the fuels used in this study, B10 has the highest 
calorific value and combustion characteristics, and hence the 
highest thermal efficiency and lowest fuel consumption. 

Incomplete combustion of heavy fuel oil due to the presence 
of polymeric compounds such as PAHs and the higher fuel 
inlet temperatures leads to an increase in exhaust temperature. 
Marine heavy oils usually have more asphaltenes and lower 
levels of combustible aromatic and naphthenic hydrocarbons, 
meaning that the engine has a higher concentration of BC 
emissions when burning heavy oils compared to blended 
biodiesel. The higher oxygen content of biodiesel causes the 
BC concentration in the engine exhaust to decrease with an 
increase in the biodiesel blending ratio.

The degree of graphitisation of BC also differs slightly when 
the engine burns different fuels. An increase in the biodiesel 
blending ratio promotes the oxidation process of BC particles 
and reduces the degree of graphitisation of BC particles. 
The higher content of polymeric cycloalkanes and aromatic 
hydrocarbons and the higher discharge temperature during 
combustion of heavy fuel oil results in higher BC graphitisation 
during combustion.
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AbstrAct

Rotor-bearing systems are important components of rotating machinery and transmission systems, and imbalance 
and misalignment are inevitable in such systems. At present, the main challenges faced by state-of-the-art fault 
diagnosis methods involve the extraction of fault features under strong background noise and the classification of 
different fault modes. In this paper, a fault diagnosis method based on an improved deep residual shrinkage network 
(IDRSN) is proposed with the aim of achieving end-to-end fault diagnosis of a rotor-bearing system. First, a method 
called wavelet threshold denoising and variational mode decomposition (WTD-VMD) is proposed, which can process 
original noisy signals into intrinsic mode functions (IMFs) with a salient feature. These one-dimensional IMFs are 
then transformed into two-dimensional images using a Gramian angular field (GAF) to give datasets for the deep 
residual shrinkage network (DRSN), which can achieve high levels of accuracy under strong background noise. Finally, 
a comprehensive test platform for a rotor-bearing system is built to verify the effectiveness of the proposed method in 
the field. The true test accuracy of the model at a 95% confidence interval is found to range from 84.09% to 86.51%. 
The proposed model exhibits good robustness when dealing with noisy samples and gives the best classification results 
for fault diagnosis under misalignment, with a test accuracy of 100%. It also achieves a higher testing accuracy 
compared to fault diagnosis methods based on convolutional neural networks and deep residual networks without 
improvement. In summary, IDRSN has significant value for deep learning engineering applications involving the 
fault diagnosis of rotor-bearing systems.

Keywords: Rotor-bearing system, Vibration signal, Feature extraction, Deep learning, Deep residual shrinkage network, Test platform

INTRODUCTION

Rotor-bearing systems are important components of 
rotating machinery and transmission system, and are widely 
used in industrial production and transportation in harsh 
environments such as ocean vessels and offshore platforms 
[1]. The lifetime of a rotor-bearing system is influenced by 
factors such as deformation, load, lubrication, temperature, 
humidity, and corrosion [2]. Thus, rotor-bearing systems are 

prone to wear, leading to long-term exception. According 
to an authoritative book [3], imbalance and misalignment 
are two common faults in rotor-bearing systems, and about 
70% of rotating machinery faults are caused by or related to 
these effects. Furthermore, imbalance and misalignment 
are  the faults most likely to cause significant engineering 
consequences. In an actual rotor-bearing system, the periodic 
signals of the system are mixed with impact signals caused 
by faults throughout the entire frequency band. The impact 
signals caused by different types of faults, such as imbalance 
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and misalignment, are relatively weak considering the 
complexity of the transmission path, which makes it more 
difficult to identify the features of different faults [4]. Hence, 
the extraction of fault features under strong background noise 
and the classification of different fault modes have become 
the main challenges faced by current fault diagnosis methods 
for rotor-bearing systems. 

Fault diagnosis based on signal processing techniques 
that require specialised knowledge is still a popular area 
of research. Bechou et al. [5] used a continuous wavelet 
transform algorithm to achieve fault signal diagnosis for 
a die-attach assembly. Moreno-Sánchez et al. [6] studied 
the imbalance and misalignment effects of the acceleration 
vibration parameters used in early bearing fault diagnosis, 
and were able to predict the probability of bearing faults with 
an accuracy greater than 90%. In addition, many scholars 
[7],[8],[9],[10] have experimented in their professional fields 
with diagnosing imbalance, misalignment, looseness, rubbing 
or cracking in rotor systems. At the same time, increasing 
numbers of researchers have combined fault diagnosis with 
artificial intelligence in recent years. It was mentioned in [11] 
that vibration analysis based on signal processing techniques 
required a significant level of human expertise, and often 
involved analysis of specific faults for specific objects. In this 
case, a model based on deep learning was proposed to monitor 
the imbalance of a rotor. The model gave significantly better 
results than the classical vibration analysis method, and the 
accuracy reached 93.61%.

The use of a convolutional neural network (ConvNet) for 
deep learning [12] has the advantage of local receptive fields, 
weight-sharing and down-sampling, and these networks 
have rapidly been introduced into engineering domains. In 
the classical ConvNet [13], the gradients of the cross-entropy 
error are backpropagated layer by layer, which can cause 
problems associated with degradation and over-fitting with 
an increase in the number of layers of a deep learning model. 
Although ConvNet has been shown to be effective in the 
domain of image recognition and classification, there are 
still certain limitations on its application [14]. A deep residual 
network (ResNet) [15] is an attractive variant of ConvNet 
in which identity shortcuts are used to ease the difficulty of 
parameter optimisation. This is the key aspect that makes 
ResNet superior to the classical ConvNet. The parameters can 
be updated more favourably, as the gradients flow effectively 
to the earlier layers approaching the input layer. In view of 
this, ResNets have been widely applied to the problem of 
fault diagnosis in recent years [16]. Tang et al. [17] published 
a review in 2020 that focused on summarising and discussing 
the fault diagnosis methods for rotating machinery based on 
deep learning that had been developed over the previous five 
years, with the main research objects being bearings, gears 
or gearboxes, and pumps. After reviewing past studies, it was 
found that the classical deep learning method could meet 
the fault diagnosis or condition monitoring requirements 
of most general rotor-bearing systems. Zhao et al. [18] 
proposed a novel model called a deep residual shrinkage 
network (DRSN) in 2020, which was found to have higher 

accuracy for noisy signals than the alternatives due to its soft 
threshold and attention mechanism. This paper shows the 
better classification performance based on DRSN in machine 
faults.

Fault diagnosis methods for other special rotor-bearing 
systems are still emerging. Bach-Andersen et al. [19] 
proposed a novel data-driven deep-learning system for 
a large-scale wind turbine drivetrain, and demonstrated 
its superior performance. Kumar et al. [20] developed a novel 
fault detection framework for multiple and simultaneous 
fault detection in SCIM that was found to outperform the 
existing state-of-the-art techniques and had an accuracy 
of 99.40%. Huangfu et al. [21] put forward an artificial 
intelligence approach for detecting engine combustion 
faults related to spark plugs using existing sensors. Although 
there was some unstable performance outside of the given 
operating conditions, it successfully detected faults with 
high accuracy. Lim et al. [22] proposed an indirect vortex-
induced vibration (VIV) detection algorithm based on deep 
learning, which took the vibration signals from the propeller 
of a crude oil tanker in sea trials as the training and test 
sets. Glaeser et al. [23] investigated the feasibility of using 
deep learning techniques for fault detection in industrial 
cold forging. Their results suggested that potential faults in 
cold forging could be detected by the proposed deep learning 
method. The research objects in the studies described above 
included turbines, motors, engines, propellers and cold 
forging in various fields, and the effectiveness of the deep 
learning method was verified.

The impact signals from imbalance and misalignment are 
easily submerged by strong background noise, and the target 
modes cannot be accurately extracted by traditional feature 
extraction methods. Traditional fault diagnosis models 
also require a certain level of professional knowledge, and 
also have poor robustness to low-frequency noisy signals 
[24]. In this paper, a fault diagnosis method for a rotor-
bearing system based on IDRSN is proposed. The core of 
this method involves transforming the one-dimensional 
feature of a vibration signal into a two-dimensional image, 
on the premise of accurately extracting the features of 
a one-dimensional time series with strong background 
noise. DRSN, which gives a better learning effect on two-
dimensional noisy data, is organically integrated into 
this scheme, and conditions involving normal operation, 
imbalance and misalignment are classified to achieve fault 
diagnosis for a rotor-bearing system. The actual working 
conditions are simulated on a test platform with imbalance 
and misalignment, and real signals are collected under 
the corresponding working conditions. An application 
experiment and a comparison experiment are conducted 
based on the datasets described above, and it is found 
through comparative experimental research that the 
proposed method significantly improves the diagnostic 
accuracy compared to classical deep learning methods. The 
method presented here can be applied to achieve diagnose 
imbalance and misalignment faults in a  rotor-bearing 
system.
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PROPOSED SCHEME 

WAVELET THRESHOLD DENOISING

Wavelet threshold denoising (WTD) is an adaptive multi-
scale denoising method that uses a threshold function, and 
was developed on the basis of the wavelet transform. WTD 
can adaptively remove the noise from a real signal while 
retaining the original signal, and has been proven to give the 
best estimate of the original signal [25]. The key feature of 
WTD is that it uses a threshold function to process real signals 
in the wavelet domain, and the original signals in the time 
domain are then calculated based on wavelet reconstruction. 
The specific steps in this algorithm are as follows:
1) The real signal ( )x t  is transformed into a set of wavelet 

coefficients ,j kw  via wavelet transformation.
2) The wavelet coefficients ,j kw  are transformed into wavelet 

estimated coefficients 


,j kw  by applying a  threshold 
function so that 



, ,j k j kw w  is as small as possible.
3) The wavelet estimation coefficients 



,j kw  are transformed 
to an estimated signal 

( )x t , which represents the denoised 
signal based on wavelet reconstruction.

In this case, we apply a semi-soft threshold function, 
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experiment are conducted based on the datasets described above, and it is found through comparative 
experimental research that the proposed method significantly improves the diagnostic accuracy 
compared to classical deep learning methods. The method presented here can be applied to achieve 
diagnose imbalance and misalignment faults in a rotor-bearing system. 
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Wavelet threshold denoising (WTD) is an adaptive multi-scale denoising method that uses a 

threshold function, and was developed on the basis of the wavelet transform. WTD can adaptively 
remove the noise from a real signal while retaining the original signal, and has been proven to give 
the best estimate of the original signal [25]. The key feature of WTD is that it uses a threshold 
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where the threshold λ  satisfies the equation 2ln( )Nλ σ= , 
and N  is the number of samples of the signals.

VARIATIONAL MODE DECOMPOSITION

Variational mode decomposition (VMD) is a completely 
non-recursive variational decomposition model for non-
stationary and nonlinear signals that can adaptively 
decompose real signals into a corresponding intrinsic mode 
function (IMF) with limited bandwidth [26]. The constrained 
variational problem in VMD is as follows: 
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where { } { }{ } { }1 1: , , : , ,k k k ku u u ω ω ω= ⋅⋅⋅ = ⋅⋅ ⋅  are shorthand 
notations for the set of all modes and their centre frequencies, 
respectively. An augmented Lagrangian is then added to make 
the problem unconstrained, and a quadratic penalty term is 

imposed to enforce strict data fidelity. Finally, we solve the 
variational problem by the alternating direction multiplier 
method (ADMM) and Parseval/Plancherel Fourier isometry.

The final equations to be solved are:
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GRAMIAN ANGULAR FIELD

The Gramian angular field (GAF) is a  method of 
transforming a  one-dimensional time series recoded 
into polar coordinates into a two-dimensional image by 
considering the trigonometric sum or difference [27]. This 
method has the advantage of preserving temporal dependency 
and containing temporal correlations. In particular, a GAF 
contains a Gramian summation angular field (GASF) and 
Gramian difference angular field (GADF), which differ only 
in terms of the defining equations.

Given a time series { }1 2, ,..., nX x x x=  of n  observations, we 
can rescale X  to the closed interval [ ]0,1  using Eq. [5]to get 
the time series { }1 2, ,..., nX x x x=    .

min( )
max( ) min( )
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X X
−

=
−
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We then recode the time series X  into polar coordinates 
using Eq. [6]:
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where it  is the time stamp, and N  is a constant factor applied 
to regularise the span of the polar coordinate system. GASF 
and GADF are defined as follows:
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where I  is the unit row vector.

DEEP RESIDUAL SHRINKAGE NETWORK

In a deep residual shrinkage network (DRSN), soft 
thresholding is applied to effectively eliminate noise-related 
features, and a specially designed subnetwork called an 
attention mechanism is used to adaptively determine the 
thresholds for each piece of the vibration signal. The process 
of soft thresholding is illustrated in Fig. 1(a). The derivative of 
the output is either one or zero, meaning that this approach 
is effective in preventing gradient vanishing and exploding 
problems, as shown in Fig. 1(b). The derivative can be 
expressed as follows: 

1
0
1

x
y x
x

x

τ
τ τ

τ

>
∂ = − ≤ ≤∂  < −

(9)

Fig.1. Illustration of (a) soft thresholding and (b) its derivative

Both the proposed DRSN and the ResNet have some 
basic components that are the same as those of the classical 
ConvNet, which are called building units (BUs). As shown 
in Fig. 2(a), the BU in the architecture of the classical Plain 
Net is composed of convolutional layers and an activation 
function based on rectifier linear units (ReLUs). The output 
of the BU can be expressed as follows:

( ) ReLU( )H x x= (10)

A residual building unit (RBU), as shown in Fig. 2(b), 
consists of an identity shortcut in addition to convolutional 
layers and ReLUs. The output of the RBU can be expressed 
as follows:

( ) ReLU( )H x x x= + (11)

Fig. 2(c) shows a type of BU called a residual shrinkage 
building unit (RSBU), which differs from the RBU in Fig. 2(b) 
as it uses a special module for estimating the threshold. The 
output of the RSBU can be expressed as follows:

( ) 0
x x x x

H x x x x x
x x x x

′ ′′ ′ ′′− >
 ′′ ′ ′′= + − ≤ ≤
 ′ ′′ ′ ′′+ < −

(12)

Fig.2. BUs for three kinds of deep learning models: (a) BU in the architecture 
of the classical Plain Net; (b) BU in the architecture of the ResNet; 

and (c) BU in the architecture of the developed DRSN

SPEARMAN’S CORRELATION COEFFICIENT

Spearman’s correlation coefficient is a statistical method 
of evaluating the correlation between two variables, and is 
defined as follows:
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The restrictions on the variables in the Spearman’s 
correlation coefficient are less strict than in the Pearson 
correlation coefficient, and the population distribution 
and sample size between variables do not require explicit 
constraints. Hence, Spearman’s correlation coefficient can 
also be defined as the Pearson correlation coefficient between 
ordinal variables.

STEPS OF THE PROPOSED ALGORITHM

A flow chart of the proposed rotor-bearing system fault 
diagnosis method based on IDRSN is shown in Fig. 3. The 
process is as follows:
(1) Normal, imbalanced and misaligned working conditions 

are simulated on a test platform.
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(2) The original vibration signals from the bearing housing 
under these three working conditions are collected, and 
1,100 data samples with a length of less than 2,000 are 
selected for each working condition.

(3) Wavelet transforms are applied to the evenly divided 
data to obtain a set of wavelet coefficients. A wavelet 
estimated coefficient is then calculated using the equation 
for a semi-soft threshold function. Finally, the time-
domain denoised signal is inverse transformed by wavelet 
reconstruction.

(4) The corresponding denoised signal is subjected to VMD to 
obtain several IMFs, and the optimal IMF under specific 
working conditions is selected based on Spearman’s 
correlation coefficient.

(5) The optimal IMF is normalised to the closed interval 
[0,1], and the normalised time series is then recoded into 
polar space. The recoded series is then transformed by 
GAF to obtain a two-dimensional image with a size that 
is scaled to 100×100.

(6) The 3,300 images obtained in this way are labelled and 
randomly shuffled to form a dataset, which is then 
divided into 2,700, 300 and 300 samples as a training 
set, validation set and test set.

(7) The training and validation sets are passed to the DRSN, 
and the fault diagnosis model is built after training and 
optimisation.

(8) The test set is used to evaluate the fault diagnosis model 
to obtain fault diagnosis results, and the effectiveness of 
the model is measured based on the test accuracy and 
confusion matrix.

Fig.3. Flow chart of the proposed rotor-bearing system fault diagnosis method 
based on IDRSN

APPLICATION EXPERIMENT

The proposed deep learning method was implemented 
using TensorFlow 2.0. Experiments were conducted on 
a computer with an E3-1226 CPU and a NVIDIA Quadro 
K2200 GPU.

EXPERIMENTAL SETUP

A comprehensive test platform of a rotor-bearing system 
was built as shown in Fig. 4(a). In terms of mechanical parts, 
the test platform contained one cast iron base, one stepping 
motor, one high-elastic coupling, three shafts, four bearings 
and four bearing housings. The stepping motor was equipped 
with a reducer with a reduction ratio of 10:1, all shafts were 
connected by flanges, and all bearing housings were fixed in 
a straight line on the cast iron base. In regard to measurement 
equipment, the test platform included a sensor, sensor signal 
conditioner and dynamic data acquisition. The sensor was an 
IEPE (Integrated Electronics Piezo-Electric) accelerometer, 
model CT1500L, as shown in Fig. 4(b). The sensor signal 
conditioner was an eight-channel signal conditioner, 
model PCB 483C05, as shown in Fig. 4(c). The dynamic 
data acquisition model was a TMR-200 with a sampling 
frequency of up to 100 kHz, which could collect analogue 
signals such as strain, voltage, and temperature, as shown 
in Fig. 4(d). The entire measurement apparatus was used for 
high-resolution acquisition of vibration signals in real time. 
In particular, the electrical signal output by the CT1500L was 
amplified, filtered, and linearised by the 483C05 to generate 

a stable analogue signal, which was 
then converted into a digital signal 
through the TMR-200 to achieve real-
time and high-precision dynamic data 
acquisition. The technical parameters 
of the stepper motor and the sensor are 
shown in Tables 1 and 2.

The experiment was conducted to 
simulate the three working conditions 
of normal, imbalanced and misaligned 
operation, and to collect real vibration 
signals from the rotor-bearing system 
under these working conditions. The 
sensor was located on the intermediate 
bearing housing to measure the vertical 
vibration signal in real time. As the 
normal operating conditions, we used 
the comprehensive test platform of the 
rotor-bearing system based on the 
design and assembly requirements, and 
artificially changed some installation 
parameters to cause imbalance or 

misalignment. To create imbalance, we screwed three bolts 
into the threaded holes around a special flange, which had 
six threaded holes in total. The weight of all bob-weight bolts 
was 0.35 kg, representing about 0.3% of the shaft weight. For 
misalignment, we changed the intermediate bearing vertical 
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displacement by about 2 mm, which represented about 2.5% 
of the shaft diameter. The stepper motor speed was set to 
500 rpm, the output speed of the reducer was 50 rpm, and 
the operating frequency of the shafts was 0.87 Hz.
Tab. 1. Technical parameters of the stepper motor

Parameter Value

Power 5.5 kW

Voltage 380 V, three-phase, 50 Hz

Speed range 0–1420 r/min

Tab. 2. Technical parameters of the sensor

Parameter Value

Sensitivity 5100 mV/(m/s2)

Measurement range 9.8 m/s2

Frequency range 0.2–500Hz

(a)

(b) (c) (d)

Fig. 4. Comprehensive test platform for the rotor-bearing system

DATA DESCRIPTION

The sampling frequency was 100 Hz, and the total number 
of sampling points was 6,600,000. As summarised in Table 3, 
we considered three health conditions for the rotor-bearing 
system: one was the healthy condition, and two represented 
rotor faults. Three groups of sample data were selected for 
the working conditions of normal operation, imbalance and 
misalignment. The total number of samples for all working 
conditions was 3,300, and the average sample data for each 
working condition was three equal parts, so the number 
of data samples for each working condition was 1,100. The 
sizes of the training, validation and test sets were 2,700, 300 
and 300 samples, respectively. In view of the consideration 
of frequency resolution, when the sampling frequency was 
100 Hz, we could have increased the number of sampling 
points for each sample data. However, it might not be 
increased blindly as the size of the two-dimensional image 
converted from GAF would have increased correspondingly, 
which would seriously reduce the computational efficiency 
of the deep learning model. For this purpose, the length of 
each data sample was finally set to 2,000. The time-domain 
waveform for the sample vibration data is shown in Fig. 5.
Tab. 3. Summary of the three health states of the rotor-bearing system 

considered in the experiments

Category Description Label

1 No fault H

2 Imbalance F1

3 Misalignment F2
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Fig. 5. Time-domain waveform of the sample vibration data under three 
operating conditions

IMPLEMENTATION 

WTD-VMD was performed on the data, which were evenly 
divided into the previously constructed datasets. Multiple 
IMFs with limited bandwidth were decomposed by the 
original signal. The time-domain waveforms for the five-
layer IMFs are shown in Figs. 6–8 for the normal, imbalanced 
and misaligned working conditions. It can be seen from the 
time-domain waveform that the IMFs were arranged from 
low to high frequency, and the corresponding features of the 
original signal that could not be directly found were extracted. 
Spearman’s correlation coefficient was calculated to assess 
how well each IMF was related to the original signal, for 
a non-Gaussian and nonlinear original signal. Table 4 gives 
Spearman’s correlation coefficients for the five-layer IMFs 
under the three working conditions. The optimal IMFs were 
selected as IMF4 for normal conditions, IMF5 for imbalance, 
and IMF5 for misalignment, and their frequency spectra 
were calculated by Fourier transform as shown in Fig. 9. 
The results for imbalance and misalignment show distinct 
reflected spectral peaks, which could be regarded as a salient 
feature of the original signal. The amplitude under imbalance 
and misalignment conditions was also much larger than 
under normal operation.

Fig. 6. Time-domain waveforms for the five-layer IMFs under normal 
conditions

Fig. 7. Time-domain waveforms for the five-layer IMFs under imbalance 
conditions
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Fig. 8. Time-domain waveforms for the five-layer IMFs under misalignment 
conditions

Fig. 9. Frequency spectra for the optimal IMFs under three working conditions

Tab. 4. Spearman’s correlation coefficients for five-layer IMFs under three 
working conditions

Normal Imbalance Misalignment

IMF1 0.332 0.301 0.356

IMF2 0.417 0.341 0.341

IMF3 0.477 0.375 0.337

IMF4 0.573 0.479 0.401

IMF5 0.511 0.716 0.739

A  GAF image contains a  GASF image and a  GADF 
image. The dimensions of the GAF image were 100×100 in 
this study, and GAF images of the original signal under the 

three working conditions are shown in Fig. 10. The fault 
features were submerged by the strong background noise, 
meaning the corresponding working conditions were difficult 
to distinguish. However, from the GAF images of the optimal 
IMFs under the three working conditions shown in Fig. 11, 
it can be seen that the images of the signal processed with 
WTD-VMD were clearly distinguished compared with the 
above GAF images. In this process, only the GASF image was 
considered, since the difference in the training accuracy was 
not obvious in many experiments when both GAF images 
were used to transform a one-dimensional time series.

Fig. 10. GAF images of the original signal under three working conditions

Fig. 11. GAF images of the optimal IMFs under three working conditions

The architecture-related hyperparameters for IDRSN were 
set as follows in the experiments. In order to demonstrate 
the training effect of inserting a soft threshold as a nonlinear 
transformation layer, we used one convolutional layer as the 
main architecture, with an RSBU between the convolutional 
layer and the pooling layer. The number of convolutional 
kernels was 12, and the size of the convolutional kernels was 
3×3. The stride was set to one and the padding to one in the 
convolutional layer. The output of the input layer was passed 
to the input of convolution layer to calculate the feature map, 
and a soft threshold in which the output feature map was the 
same size as the input feature map was inserted as a nonlinear 
transformation layer. The output of the convolution layer 
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and nonlinear transformation layer was then processed by 
batch normalisation, a ReLU activation function and global 
average pooling, in sequence. The output feature map was 
flattened and its input was passed to the fully connected 
layer. Finally, the fault classification results were obtained 
using a softmax function.

Each batch contained 32 samples, and the training mean 
square error (MSE) and training accuracy were calculated 
over 10 epochs. As shown in Fig. 12, the training MSE was 
reduced from 0.186 to 0.073, and the training accuracy was 
increased from 59% to 87%. The loss function of the neural 
network converged to a stable state. It can be seen that the 
present model had good robustness in terms of dealing with 
noisy samples. The evaluation results for this model were 
calculated by substituting the divided test set into the trained 
model. The test accuracy of fault diagnosis was 85.3%±1.21% 
at a 95% confidence interval. 

It can be seen from the confusion matrix in Fig. 13 that 
the test accuracy for misalignment was 100%. This was because 
that the fault features of misalignment had 2x vibration, and 
were therefore markedly different from the signal features for 
normal or imbalanced working conditions. In the test data, 
the amplitude of vibration caused by misalignment was much 
greater than that under normal conditions, but was similar to 
that under imbalanced conditions. However, the fault features 
of imbalanced operation and signal features of normal 
conditions were very similar, with 1x vibration, although 
the amplitude increased under imbalanced conditions. As 
a consequence, it could be for this reason that fault diagnosis 
had certain deviation under imbalance, resulting in about 
28% of the test sets being classified as normal. Overall, IDRSN 
has a high accuracy of fault diagnosis under interference 
from strong background noise, and can be used to carry 
out fault diagnosis of rotor-bearing systems under actual 
working conditions.

Fig. 12. Changes in MSE and accuracy based on IDRSN

Fig. 13. Confusion matrix for fault diagnosis results

COMPARISON EXPERIMENT

An experiment was carried out to compare the results from 
using WTD-VMD for feature extraction with those of two 
other deep learning methods, ConvNet and ResNet. These 
two deep learning methods were compared with DRSN and 
were used with and without WTD-VMD, to investigate its 
effectiveness. The architectures of ConvNet and ResNet are 
shown in Fig. 2; the convolution layer, pooling layer, activation 
function and fully connected layer were consistent with those 
in IDRSN, in order to demonstrate the classification results 
from using a soft threshold as a nonlinear transformation layer 
on the same noisy signals. The results for the test accuracy 
and computational time are shown in Fig. 14. 

With regard to the feature extraction methods, it can 
be seen that for all of the deep learning methods, the test 
accuracy obtained by substituting datasets processed with 
WTD-VMD into the model was greater than the test accuracy 
obtained by directly substituting the datasets into the model. 
For the same premise condition, the test accuracy based on 
ConvNet, ResNet and DRSN increased from 51.33% to 62%, 
58.3% to 81.33% and 70.99% to 89.67%, respectively. The 
use of WTD-VMD with these three deep learning methods 
improved the test accuracy by about 10–23%; however, the use 
of the feature extraction method had no obvious effect on the 
computational time. As the complexity of the deep learning 
architecture increased, the calculation results showed that in 
ResNet, due to the identity shortcuts that were involved, many 
identical mappings were performed on this layer when the 
residual term was zero. This might reduce the computational 
time when datasets with salient features are substituted as 
input layers, but for the ConvNet with a classical architecture, 
its computational time might be mainly affected by batch size.

DRSN achieved a higher test accuracy of fault diagnosis 
compared with the traditional ConvNet and ResNet when 
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trained on the same datasets. When all the datasets were 
used with WTD-VMD, the test accuracy achieved by DRSN 
improved by 27.67% and 8.34% compared to ConvNet and 
ResNet, respectively. Furthermore, the deep learning model 
with a simpler architecture had a lower computational time. 
When all the datasets were used without WTD-VMD, the 
computation time for ConvNet was the lowest, at 542 s, and 
that for ResNet was the second, at 741 s. The computation 
time for DRSN was the higher, at 756 s. Hence, although the 
proposed method was better than other methods in terms 
of efficiency and accuracy, there was no obvious advantage 
in computation time.

The training errors for ConvNet, ResNet and DRSN are 
shown in Fig. 15 for the dataset processed with WTD-VMD. 
The values for DRSN, ResNet and ConvNet at the 10th epoch 
were 0.0187, 0.0298 and 0.0312 respectively. It can be seen 
that the training error of DRSN and ResNet decreases faster 
than that of ConvNet, but that DRSN has the lowest overall 
training error. Neither over-fitting nor under fitting were 
observed for IDRSN, indicating its good generalisation ability. 

Fig. 14. Comparison of results for different fault diagnosis methods

Fig. 15. Comparison of training error for three deep learning methods

CONCLUSION

Imbalance and misalignment are unavoidable in a rotor-
bearing system. In this paper, a fault diagnosis method based 
on IDRSN has been presented with the aim of achieving end-
to-end fault diagnosis of a rotor-bearing system. A simulated 
fault experiment was conducted on a comprehensive test 
platform of a rotor-bearing system, and the effectiveness 
of the proposed method under three working conditions 
(normal operation, imbalance and misalignment) was 
explored through a simulated fault experiment. The work in 
this paper can be summarised as follows:
1) A comprehensive test platform for a rotor-bearing system 

was built to simulate these faults, and real vibration signals 
were collected under corresponding working conditions. 
A total of 3,300 groups of original data representing 
different fault modes were collected to provide enough 
data for the fault diagnosis model.

2) WTD-VMD was applied to the real vibration signal 
data, which were evenly divided into three datasets. The 
time domain waveforms of IMFs under three working 
conditions of normal, unbalance and misalignment were 
presented after filtering and decomposition. Significant 
differences in corresponding fault modes were seen in the 
frequency domain waveforms of the IMFs. The optimal 
IMFs were selected based on Spearman’s correlation 
coefficient and transformed into two-dimensional images 
via GASF. Datasets for the deep learning models were 
created based on these 3,300 two-dimensional images.

3) An end-to-end multi-fault diagnosis model of a rotor-
bearing system was established, which was shown to have 
good robustness when dealing with noisy samples. The 
true test accuracy of the present model at a 95% confidence 
interval may range from 84.09–86.51%, and the values of 
the test accuracy for normal, imbalanced and misaligned 
conditions calculated from the confusion matrix were 85%, 
72%, and 100%, respectively. The proposed model was 
found to give good classification results for fault diagnosis 
under misalignment.

4) ConvNet and ResNet were compared with DRSN, with 
and without WTD-VMD. With respect to the feature 
extraction methods, we found that the test accuracy when 
WTD-VMD was included in the model was greater than 
without WTD-VMD, regardless of the deep learning 
method used, and WTD-VMD was shown to improve 
the test accuracy by about 10–23%. The proposed method 
had a lower training error than ConvNet and ResNet, and 
the average fault diagnosis accuracy was higher by 27.67% 
and 8.34%, respectively.
In conclusion, IDRSN has the advantages of high 

modularity, fast convergence speed, high diagnostic accuracy, 
and good robustness to noise. Our approach will be of great 
value in terms of creating engineering applications based on 
deep learning for fault diagnosis of rotor-bearing systems.
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AbstrAct

The results of studies on a trajectory-tracking problem affected by false data injection attacks (FDIAs) and internal 
and external uncertainties are presented in this paper. In view of the FDIAs experienced by the system, we compensate 
for the serious navigation deviation caused by malicious attacks by designing an online approximator. Next, we study 
the internal and external uncertainties introduced by environmental factors, system parameter fluctuations, or sensor 
errors, and we design adaptive laws for these uncertainties to approximate their upper bounds. To further enhance 
the response velocity and stability of the system, we introduce finite-time technology to ensure that the unmanned 
underactuated surface vessels (USVs) reach the predetermined trajectory-tracking target within finite time. To further 
reduce the update frequency of the controller, we introduced event-triggered control (ETC) technology. This saves the 
system’s communication resources and optimizes the system. Through Lyapunov stability theory, a strict and complete 
stability analysis is provided for the control scheme. Finally, the effectiveness of the control scheme is verified using 
two sets of simulations.

Keywords: Unmanned underactuated surface vessels; False data injection attacks; Internal and external uncertainty; Finite-time control; 
Event-triggered control

INTRODUCTION

In recent years, unmanned underactuated surface 
vessels (USVs) have received widespread attention due to 
the continuous development of the maritime economy [1]. 
Unmanned USVs lack lateral drive, which requires researchers 
to consider more aspects when they design control schemes 
[2]. We are currently in the information age, and unmanned 
USVs are also susceptible to cyber-attacks. In particular, false 
data injection attacks (FDIAs) can cause serious navigation 
deviations in USVs [3]. Therefore, a more complete control 
scheme must be designed to deal with the above challenges.

In practice, USVs are inevitably affected by external 
interference. Under the constraints of external interference, 
feedback linearization is the most commonly used design 
method [4]. This method makes the problem simple by 
introducing appropriate feedback to linearize some parts of 
or the entire nonlinear system. However, although nonlinear 
problems can be transformed into linear problems through 
this method, complex mathematical transformations 
may be required to achieve this transformation. To avoid 
similar problems, the authors of [5] automatically adjusted 
the parameters to respond to environmental changes by 
introducing adaptive technology. This approach caused the 
control design to no longer be dependent on an accurate 

https://orcid.org/0009-0005-4872-5451
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system model. However, adaptive controllers may overreact 
to noise or brief perturbations, resulting in unnecessary 
controller adjustments. To further optimize control, the 
authors of [6], [7] introduced a disturbance observer (DO) 
to estimate and compensate for external disturbances in 
real time. Although the perturbation observer does not 
completely rely on an accurate system model, it requires 
some prior knowledge of the model. Therefore, usually, the 
DO will combine adaptive neural networks (NNs), fuzzy 
control, and other methods to design the control scheme. The 
authors of [1] further introduced a finite-time disturbance 
observer (FTDO) to compensate for external interference. 
The FTDO can complete disturbance estimation within finite 
time, which makes its response to disturbances faster than 
that of the traditional DO.

Due to the modelling technology and the complex 
structure of the USV itself, the USV mathematical model 
has unmodelled dynamics. These uncertain dynamics caused 
by model parameter perturbations, unmodelled dynamics, 
etc., are called internal uncertainties. The authors of [8] 
designed a control scheme by combining model predictive 
control (MPC) and online parameter estimation technology. 
When system parameters change or there is a disturbance, 
this scheme uses online estimated parameters to update the 
model, thereby adapting to the uncertain dynamics of the 
system to a certain extent [9]. However, MPC needs to solve 
an optimization problem at each control step. For a system 
with multiple constraints, the computational complexity will 
increase dramatically. In addition, the performance of MPC 
is highly dependent on the accuracy of the model used. If the 
model deviates significantly from the real system, it may not 
achieve the desired performance [10]. The authors of [11], [12] 
used fuzzy and neural networks, respectively, to reconstruct 
the uncertain dynamics of the system. However, they also 
face the same problem as MPC, that is, the computing 
requirements of the system can be high. The authors of [13], 
[14] used the output feedback design method to estimate the 
unmeasured state within the system. Compared with NNs, 
state observers provide a structured approach for estimating 
unmeasured states. The design logic and principles are usually 
clear and explainable. The NNs are often regarded as ‘black 
box’ models, and their inner workings are difficult to explain. 
However, the performance of state observers is often highly 
dependent on accurate knowledge of the system model. 
If the system model is inaccurate or contains significant 
modelling errors, the performance of the observer may be 
severely affected.

In practice, to ensure the safety of the USVs, trajectory 
tracking needs to be completed within finite time. This may 
be difficult to achieve with traditional control strategies. 
Unlike traditional asymptotic stability control strategies, 
finite time control (FTC) strategies ensure stability and 
a given tracking performance within a predetermined time. 
The authors of [15]–[17] designed a finite-time trajectory-
tracking control scheme. They reduced possible instability 
or undesirable behaviour during the transition by reducing 
the transition time of the system from the initial state to the 

desired state. The authors of [1], [18] further introduced FTDO 
based on [15]–[17], which further improved the steady-state 
performance of the system. The control signal updates of most 
of the above control schemes are based on predetermined, 
fixed time intervals, without considering the system status or 
external events. Event-triggered control (ETC) only updates 
control inputs when certain events or conditions are met, 
rather than at fixed time intervals. Compared with fixed 
time intervals, communication bandwidth can be saved and 
energy consumption can be reduced [19], [20]. The authors of 
[19] designed a model-based time-triggered control scheme. 
The authors of [20] further considered actuator faults and 
designed an adaptive Proportional-integral-derivative (PID) 
fault-tolerant control scheme based on ETC. However, none 
of the above literature considers the potential impact of the 
network environment on the USV system.

The authors of [21] developed a predictive compensator 
based on event-triggered model predictive control. This 
strategy can mitigate the effects of external interference 
and input restrictions under cyberattacks such as denial of 
service (DoS) attacks. The integration of a model predictive 
controller with a nonlinear disturbance observer in this 
strategy enables the precise estimation of and compensation 
for disturbances. In addition, the predictive compensator 
effectively reduces the impact of cyberattacks, while the 
event-triggering mechanism saves computing resources. The 
authors of [22] discussed the security control of multiple 
autonomous ground vehicles when they faced DoS network 
attacks and proposed a  distributed security formation 
control algorithm. The algorithm optimizes communication 
resources using a model-based dynamic event-triggering 
mechanism and a positive minimum inter-event time. The 
authors of [23] studied the adaptive event-triggered path 
tracking control of a USV based on double-layer virtual 
ship guidance under spoofing attacks. They introduced an 
adaptive virtual ship model for smooth path generation 
and a robust adaptive control algorithm to compensate for 
spoofing attacks. This method combines event-triggering 
rules with adaptive compensation technology to improve 
the accuracy and stability of the closed-loop control system. 
These studies provide innovative solutions for USV security 
against cybersecurity threats. The above literature did not 
consider FDIAs.

In the current network security environment, USVs face 
the threat of multiple network attacks. FDIAs represent 
a  particularly serious threat. This attack disrupts the 
normal operation of the ship by injecting false or misleading 
information into the system.

PROBLEM FORMULATION 
AND PRELIMINARIES

In this paper, we use a mathematical model of USVs with 
three degrees of freedom. The model contains information 
such as the USV’s mass, displacement, and yaw moment. The 
specific form is as follows [24] [25]:



POLISH MARITIME RESEARCH, No 1/2024116

( ) ( )
( ) ( )

cos sin

sin cos

x u v

y u v
rϕ

ϕ ϕ

ϕ ϕ

= −


= +
 =







(1)

( )

( )

( )

1

1

1

u
u

v
v

r r

f
u u

v

f
r

r

f

f

f

u V d
m

V d
m

r V d
m

τ

τ

ν


 = + +  




= +   



 = + +  








(2)

( )
( )
( ) ( )

2

| | | | | | | |

| | | | | | | |

( )

( | | | | | | | | )

[ | | | | | | | | ]

u v r u u u

v v v v r v r u v r r r

r u v r v r r v v v v r r r

f m vr Y r X u X u u

f Y v Y v v Y r v Y r m ur Y v r Y r r

f m m uv Y ur N v N r N r v N v v N v

V

V

V r N r r

 =
 =
 =

− + +

+ + + − + +

− + + + + + + +





(3)

where x , y , and ϕ  represent the position and heading angle 
of the USV in the geodetic coordinate system, respectively. 
u , v , and r  represent the velocity of the USV in different 
directions, respectively. ( )uf V , ( )vf V , and ( )rf V  
represent nonlinear dynamics. im ( ), ,i u v r=  represents 
inertial masses. ud , vd , and rd  represent external 
interference items. f

uτ  and f
rτ  are the control inputs 

disturbed by the FDIAs. The mathematical expressions for 
these variables are as follows [26]:

f
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f
r r r

τ τ ξ
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= +
(4)

where uξ  and rξ  are the FDIAs experienced by the system.
Remark 1: The physical equipment and controllers of 

autonomous unmanned vessels are often connected to each 
other through networks. This connection method makes 
the system vulnerable to cyberattacks. The focus of this 
article is to explore a specific form of attack related to Eq. 
(3), namely additive FDIAs. The core principle of this attack 
is that the attacker maliciously injects false signals into the 
communication link between the controller and the actuator, 
thereby affecting or destroying the normal operation of the 
system. Such attacks can have serious negative impacts on the 
safety and performance of autonomous unmanned vessels.

The assumptions and required lemmas in this study are 
as follows:

Assumption 1 [25]: The ( )if V , ( ), ,i u v r= , are 
unknown. Interference items outside the system, that is, 
external interference id , ( ), ,i u v r= , are unknown and 
bounded. That is, there are unknown positive constants iη
, such that id  satisfies i id η≤ .

Assumption 2: The sway velocity v  is passively bounded.

Lemma 1 [27]: Assume that there is a positive definite 
Lyapunov function ( )V x : 0 RΩ →  and any scalars 

0a > , 0b > , and 0 1κ< < , so that the inequality 
( ) ( ) ( ) 0V x aV x bV xκ+ + ≤  holds; then, the system is 

stable in finite time, and its adjustment time satisfies
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T
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−
 (4)

where ( )0V x  is the initial value of ( )V x .

Lemma 2 [28] [29]: For any 0λ >  and x R∈ , the 
following relationship is satisfied:
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Fig. 1. General framework of USV trajectory-tracking control

The tracking error is defined as follows:
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where ex  is the lateral error, ey  is the longitudinal error, eϕ  
is the heading angle error, and 2 2

e e ez x y= +  [23]. ( )-1J ϕ  
is a rotation matrix, and ( ) ( )T -1J Jϕ ϕ= . dx , dy , and 

dϕ  are the reference position and reference heading angle, 
respectively. uα  and rα  are virtual control variables designed 
later. The specific form of the reference heading is as follows:
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Then, we can obtain the new kinematic error equation 
as follows:
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The Lyapunov function is defined as follows:
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By deriving Eq. (10), we can obtain
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According to Eq. (11), the virtual control variables are 
designed as follows:
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where 11η ， 12η ， 21η ， 22η ，andν  are positive definite 
parameters. ( ) ( ). . sgn .sig νυ = 。, where ( )sgn .  is the 
sign function.

SURGE AND YAW ADAPTIVE CONTROL LAWS DESIGN

To avoid the derivation of the virtual controls uα  and rα , 
we introduce the following filter:
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where uκ  and rκ  are positive definite parameters. 

According to Eq. (13), the filter error is defined as follows:
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By deriving Eq. (14), we can obtain
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Substituting Eq. (12) into Eq. (15), we can obtain
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where uχ  and rχ  are continuous bounded functions, and 
the maximum values are uP  and rP .

The velocity tracking error is defined as follows:
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By taking the time derivative of Eq. (17) and substituting 
Eqs. (2) and (3) into it, we can obtain
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where 
ud u udξ ξ= + , 

rd r rdξ ξ= + , ( )u uf VΘ = , and 

( )r rf VΘ = . ud , rd , ( )uf V , and ( )rf V  are the upper 

bounds of ud , rd , ( )uf V , and ( )rf V  , respectively.



POLISH MARITIME RESEARCH, No 1/2024118

The design control law and adaptive law are as follows:
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where 31η , 32η , uµ , uϑ , 
uϑ

δ , uε , uφ , 
uφ

δ , 41η , 42η , rµ , 

rϑ , 
rϑ

δ , rε , rφ , and 
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δ  are positive definite parameters. 
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rdξ , respectively.

Define the measurement error as
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where t  is the trigger time interval, ( )u tτ  and ( )r tτ  are 
the values of the controller at the previous starting time, and 

( )u tτ  and ( )r tτ  will start at the trigger time kt  and will 
be maintained at a constant value by the zero-order holder 
until the trigger time 1kt +  is updated.

The design ETC conditions are as follows:
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where uη  and rη  are design parameters greater than 0. 
When the trigger condition is violated, the update time 
of the controller is marked as 1kt + , and the control signal 
of the controller is simultaneously updated as ( )1u ktω +  as 
the control input of the system.

STABILITY ANALYSIS

Select the following Lyapunov function for the closed-
loop system:
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 (23)

where uΘ , rΘ , 
udξ , and 

rdξ  are the estimation errors of 
uΘ , rΘ , 

udξ , and
rdξ , respectively.

By deriving Eq. (23) and substituting Eq.(19) into it, we 
can obtain
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According to Lemma 2, Eq. (24) can become
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According to Young’s inequality, Eq. (25) can become
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where 21 1
2u u

u

Pω
κ

= −  and 21 1
2r r

r

Pω
κ

= − .
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By further simplifying Eq. (26), we can obtain
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where 
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According to Eq. (27), we can obtain
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According to Lemma 1, the system will stabilize to area 

1

:L L L
ýυ

 Ω
Ω = ≤ 

 
 within finite time, and the stabilization 

time is as follows:

( )
( ) ( )

1
2

1

1

2

2

14 ln
1

0
T

H
υ

ι υ
ι υυ

υ
− 

− ≤ −
 

+



(30)

From Eq. (20), we can obtain

( ) ( ) ( )

( ) ( ) ( )

* sgn

* sgn

u u u u u u

r r r r r r

d de e e e e L t
dt dt
d de e e e e L t
dt dt

 = = ≤

 = = ≤










(31)

Since the iL  ( ,i u r= ) are smoothly differentiable 

functions, iL  is a continuous function. Since all its variables 

are globally bounded, 0iλ >  makes i iL λ≤ . When kt t=

, ( ) 0i ke t =  and ( )lim
k

i it t
e t η

→
= . Therefore, there is a time 
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kt  that satisfies * i

i

t η
λ

≥ . In summary, Zeno’s 

behaviour will not occur.

SIMULATION

In the simulation stage, the Cybership 2 ship model of 
the Norwegian University of Science and Technology was 
selected as the controlled object, and its parameters are 
detailed in [30]. To verify the effectiveness of the designed 
finite-time trajectory-tracking control scheme, the time-
varying disturbance given in Eq. (32) is selected to simulate 
the external uncertain interference in actual navigation:
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The system’s FDIA signals are set as follows:
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t
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The control parameters are detailed in Table 1.
Tab. 1. Controller parameters

11 0.3η = 12 0.1η = 21 0.3η = 22 0.1η = 0.5ν = 0.01uκ = 0.1rκ =

0.01rκ = 31 0.3η = 32 0.5η = 1uµ = 0.01uϑ = 0.03
uϑ

δ = 1uε =

0.02uφ = 0.02
uφ

δ = 41 0.5η = 42 0.3η = 1.5rµ = 0.01rϑ = 0.02
rϑ

δ =

1rε = 0.01rφ = 0.02
rφ

δ = 0.02uη = 0.3rη =

To carry out the quantitative and qualitative analysis of 
the control scheme designed in this article, we introduce 
the integrated absolute error (IAE) and mean integrated 
absolute control (MIAC) in Eq. (35) to evaluate the steady-
state performance and energy consumption performance. 
The evaluation results are shown in Tables 2 and 3:
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Simulation experiment 1
In simulation experiment 1, we set the simulation time to 

200 s and the step size to 0.01.
The circular reference trajectory is as follows:
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d

d
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Tab. 2. Performance index comparison of the control schemes for simulation 1

ETC scheme Continuous 
scheme

The scheme 
in [25]

IAE
ex 10.23 10.15 11.37

ey 9.52 9.26 10.29

MIAC
uτ 1.36 1.41 1.39

rτ 1.12 1.33 1.28

The simulation results of this study are shown in 
Figures 2–10. Figures 2 and 3 show the effects of three 
different control schemes for completing tracking tasks. They 
show that each control scheme successfully completed the 
established tracking task within a limited time, confirming 
the effectiveness of the control scheme.

Figure 4 shows the trend of the system velocity with time 
under these three control schemes. The results show that as 
time progresses, the system velocity under all control schemes 
gradually tends toward a bounded stable state.

The time course of the systematic error is shown in 
Figures 5 and 6. These curves clearly show the performance 
comparison under different control schemes. The continuous 
control scheme designed in this article shows the best effect 
in terms of the control performance, followed by the ETC 
scheme designed in this article. In contrast, the control effects 
of these two schemes are better than the control scheme 
proposed in [25].

Figure 7 shows the duration curve of the system control 
input. It can be observed from the figure that as time goes 
by, the control inputs of the three control schemes stabilize 
within a relatively small interval. This shows the stability and 
reliability of the control scheme. Figures 7 and 10 further 
demonstrate the advantages of the ETC control scheme in 
terms of the controller update frequency compared to the other 
two continuous control schemes. In the ETC control scheme, 
the controller is updated only 2611 times and 986 times. For 
both continuous control schemes, the number of controller 
updates is 20,000 times. This means that the ETC scheme 
can achieve effective control with a lower update frequency, 
thereby more effectively solving the communication resource 

limitation problem. In addition, according to the comparison 
of the performance indicators in Table 2, it can be concluded 
that the IAE value is the smallest in the continuous control 
scheme designed in this paper, followed by the ETC scheme 
and finally the scheme in [25]. The MIAC value is the smallest 
for the ETC scheme, followed by the scheme in [25] and finally 
the ETC scheme. This means that the tracking accuracy of 
the two control schemes is significantly improved compared 
to the scheme in [25]. However, the energy consumption 
of the continuous control scheme designed in this article 
is slightly higher. The ETC control scheme has significant 
improvements in terms of both the tracking accuracy and 
energy consumption.

Figures 8 and 9 show the approximation effect of the 
approximator on FDIAs, external disturbances, and dynamic 
uncertainties in the system. These plots show that the upper 
bounds of all uncertainties are effectively estimated, thereby 
enhancing the robustness of the control scheme.

Fig. 2 Actual and reference trajectories in the ( ),x y  plane

Fig. 3. Actual and reference positions
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Fig. 10. Time evolution of the inter-event time

Simulation experiment 2
In simulation experiment 2, we set the simulation time to 

100 s and the step size to 0.01.
The reference trajectory is as follows:

( )
( )

10sin 0.02

6sin 0.04
d

d

x t

y t

π

π

=


=
(34)

Tab. 3 Performance index comparison of the control schemes for simulation 2

ETC scheme Continuous 
scheme

The scheme 
in [25]

IAE
ex 11.15 11.02 12.21

ey 10.35 10.02 11.31

MIAC
uτ 1.45 1.52 1.49

rτ 1.31 1.38 1.35

The simulation results are shown in Figures 11–20. 
Figures 11 and 12 show the tracking effects of the three control 
schemes on the reference trajectory. They all completed 
the tracking task excellently. However, the control scheme 
designed in this article can track the reference trajectory 
more quickly. Figure 13 shows the velocity changes of the 
three control schemes. They all tend to be bounded over time. 
Figures 14 and 15 show the tracking error of the system. The 
tracking accuracy of the control scheme designed in this 
paper is significantly higher than that of the control scheme 
in [25]. By analyzing the performance indicators in Table 2, 
we can conclude that the continuous control method designed 
in this article has the highest tracking accuracy, followed 
by the ETC scheme designed in this article. The method in 
[25] is slightly inferior in terms of tracking progress. From 
the perspective of energy consumption, the ETC method 

is the most energy-saving, followed by the control scheme 
in [25] and finally the continuous control scheme designed 
in this paper. Although the continuous control scheme has 
the highest control accuracy, it is accompanied by high 
energy consumption. The ETC method takes into account 
the advantages of lower energy consumption and higher 
tracking accuracy.

According to Figures 16 and 19, it can be concluded that 
the update frequency of the ETC scheme controller has been 
greatly reduced. In the continuous control scheme and the 
control scheme in [25], the number of controller updates 
is 10,000, while in the ETC scheme, it is only 603 and 607. 
Figure 17 shows the adaptive curve of the system dynamic 
uncertainty. Figure 18 shows the approximation effect of the 
system on the composite uncertainty dynamics composed 
of external disturbances and FDIAs. They are all effectively 
estimated.
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CONCLUSION

This paper studies the USV trajectory-tracking control 
problem constrained by FDIAs and internal and external 
uncertainties. Uncertain dynamics, including FDIAs, are 
compensated through the design of online approximators. At 
the same time, to optimize the tracking performance of the 
system, we also introduced FTC and ETC technologies. They 
improve the steady-state performance of the system and save 
the communication resources of the system. They ensure that 
the system can still complete control tasks with high precision 
under the constraints of limited communication resources. 
The main contributions of this article are as follows:

(1) This paper solves the trajectory-tracking control 
problem of USVs under the influence of FDIAs for the first 
time. Compared with [1], [2], this method can effectively cope 
with and resist the adverse effects of FDIAs, ensuring that 
USVs can still accurately track the predetermined trajectory 
when they are attacked.

(2) This paper incorporates FTC technology into the design 
process of the control scheme. Compared with [8], [13], this 
scheme ensures that USVs can quickly adjust when they face 
emergencies, thereby meeting the need for rapid response.

(3) This paper organically combines FTC technology 
and ETC technology. Compared with [15], [16], this scheme 
provides the system with rapid response capabilities for 
emergencies and external disturbances. The ETC mechanism 
ensures that control is only performed at critical moments 
while also greatly reducing the computing and communication 
requirements, making the control system more energy-saving 
and efficient.

Overall, our research provides an efficient and stable 
trajectory-tracking control scheme for USVs disturbed by 
FDIAs and internal and external uncertainties, providing 
new ideas for research and practical applications in this field. 

However, the types of attacks covered in this study are 
limited to FDIAs targeting actuators. In the future, we hope 
to expand the attack objects to the output of the system and 

introduce more attack types, such as deception attacks and 
denial of service attacks.
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AbstrAct

IIn this study, which can be considered a contribution to the global effort to produce sustainable materials and to 
search new manufacturing methods for the boatbuilding industry, the performance of a 3D printable polylactic acid 
and recycled wood (PLAW) composite was investigated under the simulated operational conditions of a boat. The wood 
used in the composite was yellow pine (Pinus sylvestris), a local wood widely used in boat building and 8% by weight in 
the composite. For the study, tensile and compressive strength tests were performed in both atmospheric and post-aging 
conditions, using composite samples produced by the additive manufacturing method. The durations of the accelerated 
aging before the experiments were one, two and four weeks. During these aging periods, water spraying, a salty fog 
environment and a drying cycle were applied at elevated temperatures and at equal time intervals, daily. The effect of 
wood additive on the composite and the joining efficiency of the components were also examined with scanning and 
optical microscopes. The performance of the obtained composite and the effects of aging on performance were measured 
using two different thermal analyses: differential scanning calorimetry and thermogravimetric analysis. From the 
results obtained, it can be seen that PLAW composite can be used in the manufacture of structural elements subjected 
to relatively low loads in boats. It is an option that will provide integrity in the future interior design of wooden boats.

Keywords: Fused Filament Fabrication (FFF); Additive Manufacturing; Wooden boat building; PLA and recycled wood (PLAW) composite; 
Environmental marine degradation; Yellow pine (Pinus sylvestris)

INTRODUCTION

From the first day that humans started using water for 
transportation (up until about a hundred years ago), wood 
has been the primary material used to build small marine 
craft. Although this natural material has now been replaced 
by steel in large ships, it has maintained its competitiveness 
in the construction of recreational marine craft through the 
continual development of woodworking technologies [1]. 
Different seas, different needs, and different trees enable the 
traditions of boatbuilding, which have been enriched by the 
experiences transferred from the master to the apprentice 

over the accumulation of centuries, continuing in every 
corner of the world. Structural wood elements, which have 
a good ‘strength/weight’ ratio, are resistant to fatigue loads 
and shock, as well as being easily repairable, easy to obtain 
and easy to handle, while being comfortable to work on. 
Wood is indispensable for those who are especially fond of its 
naturalness and warmth and reflects the interaction between 
Man and the forests of the earth.

Although the effects of sea salt in retarding wood decay 
have been known for centuries, the degradation effects of water 
and salt in the marine environment on wood material have 
not been adequately studied. It is known that environmental 
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factors, such as humidity and moisture distribution, affect the 
hardness and strength of wood products. For more successful 
wooden hull designs, it is thought that it is essential to know 
the time-dependent changes in a tree’s qualities, which are 
exposed to the effects of salt water from the atmosphere and 
the sea [2].

The yellow pine tree (Pinus sylvestris) grows in many parts 
of the world. They are common in the northern regions of 
Russia, most of Europe, and Anatolia’s northern mountains. 
Since they have ‘pile’ roots, they are resistant to storms. The 
leaves of yellow pines are shorter than  those of the other 
pines, depending on their family. In addition, their cones 
are small, short, and point downwards. Their pointed peaks 
exceed 40 m. The tree’s name comes from the yellow fox 
colour of the trunk’s bark [3]. This tree was chosen in this 
study because it is widely used in the structural elements of 
boats due to its resistance to the marine environment and 
its cost-effectiveness, compared to commonly used maritime 
woods, such as teak [4]. 

‘Gulet’ type wooden sailing boats are widespread, especially 
in the Bodrum region of Turkey (Fig. 1). The boatyards in this 
region are highly competent and specialise in manufacturing 
gulets, based on a long-standing tradition. The dimensions 
of these boats are usually between 10-50 m long and their 
freeboard is very high. They give a sense of safety to their 
passengers because of their stability. 

Fig. 1. (a) The wooden boat building zone in Turkey, (b) typical gulet type of 
boat (b),(c) degradation zones of a wooden boat (c).

In today’s wooden boat industry, a significant amount of 
wood is used to build these boats. The increasing demand 
for boats (and, therefore, trees) has raised sustainability 
concerns. This is evident when considering the teak wood 
used in floor coverings. Due to excessive consumption, teak 
trees have decreased rapidly in recent years. The high eco-
cost of tropical forest deforestation, due to teak logging and 
long transportation distances, makes this tropical timber 
less sustainable than timber from more local sources. The 
industry has turned to synthetic teak and petroleum-derived 
thermoset plastics, to combat this situation. These materials 

have a longer service life and lower maintenance costs but the 
recycling of these materials is highly problematic. Considering 
recycling concerns, thermoset petroleum-based polymers 
were not considered as an alternative sustainable material 
in this study.

Polylactic acid (PLA) is a biodegradable thermoplastic [5], 
which has become a widespread alternative to petroleum-
derived products, but there are increasing environmental 
concerns [6]. PLA is polyester produced by the fermentation of 
a carbohydrate source, such as corn starch or sugar cane, under 
controlled conditions. Using the fused filament fabrication 
(FFF) method with 3D printers, this thermoplastic makes 
the creation of rapid prototypes and complex geometries for 
engineering applications possible [7]. 

There are certain limitations in 3D printing technologies, 
in terms of materials, processes, and performance [8]. 
Research into naturally derived and renewable polymers, 
instead of petroleum-based polymers, with a sustainable 
environment-oriented approach has attracted a great amount 
of attention [9]. Bio-composite filaments made of natural 
fibre-reinforced materials, such as wood shavings, hemp or 
flax fibre, are frequently used to improve composite material 
properties [10]. PLA with a wood reinforcement (PLAW) 
composite can be considered as a reasonable alternative 
to solid wood in complex interior architecture products 
with improved mechanical properties because handcrafted 

wood carvings and furniture are costly and 
unsustainable [11]. The PLAW composite used 
in 3D printers has emerged as an economically 
and environmentally sustainable option for 
manufacturers [12]. However, the need for 
more extensive research on the behaviour 
of this material is also emphasised in the 
literature [13].  

In addition, working with complex hull 
forms in classical wooden boat production 
is very challenging, and time and energy 
consuming; it requires a lot of dexterity [14]. 
It is clear that the additive manufacturing 
technique will be extremely useful in the 
production of boats, phasing out the difficulties 
created by the high angle curvatures in hull 
geometry. Thus, boat forms with better 
hydrodynamic performance will be easily 

accessible. Despite the mentioned benefits, the use of additive 
manufacturing technologies in the boat building industry 
has not yet become as widespread as in the automotive and 
aviation industries [15].

Wood-plastic composites, based on heat-treated wood 
and polypropylene, are also more resistant to UV radiation, 
which is an essential factor in long-term performance in an 
open environment [15]. The choice of wood species in such a 
composite is critical to its resistance to environmental marine 
degradation [17]. In addition, it is undeniable that mechanical 
properties will be improved if the surface treatment is applied 
between the matrix and the fibres [18]. The changes in printing 
parameters, such as printing temperature, infill rate, and 
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printing speed, significantly influence the performance in 
different environments. For this reason, it is necessary to carry 
out a parameter optimisation study before the manufacturing 
process [19].

On the other hand, the performance of petrol-derived 
thermoplastics in a corrosive environment is found to be 
relatively high compared to biodegradables. The mechanism 
of the degradation of thermoplastics exhibits complexity and 
needs to be fully understood [20]. 

It should be emphasised that the marine environment is 
highly corrosive and abrasive. Seawater contains an average 
of 3.5% salt in different forms, depending on the geography 
and ocean systems [21]. This corrosive environment reaches 
its maximum in the ‘splash zone’, as seen in Fig. 3. These 
regions get wetted by the waves and are then dried and cooled 
during the day [22]. In this study, an air conditioning cabinet 
was used to simulate the conditions in the related zones. In 
addition, marine fouling and boring organisms can degrade 
the materials by coating them. 

PLAW composite degradation severity depends on factors 
such as the environment, the presence of microorganisms, 
and the type of components of the composite. Studies have 
shown that both of the components of the composite could 
be very sensitive to marine environmental agents as a result 
of this effect [21]; the emergence of fibre and microplastic 
pollution will be inevitable. 

In order for PLAW composite to be considered as a 
sustainable material, its components must also be sustainable. 
Although PLA is derived from sustainable plant sources, the 
other component, wood, should only be expected to be in 
the form of waste [23]. The amount of energy needed in the 
production of PLAW composites with 3D printing technology, 
and the amount of energy required to produce an 
equivalent product from solid wood, will also give an 
idea of which option is more sustainable [24]. In this 
context, it is important to perform life cycle analyses 
to compare the environmental impacts of the options.

As the wood fibre ration in the composite increases 
up to a certain value, it is expected that the mechanical 
performance of the composite will also increase. 
However, if this ratio is above a certain value, the 
composite starts to lose its mechanical performance 
and printability, together with its toughness. For short 
fibre-reinforced polymer composites to be used with the 
FFF technique, the fibre ratio should not generally exceed 20% 
by weight. The weight ratio varies, according to the matrix 
and its rheology [25]. 

In this study, A PLAW composite was designed using 
PLA and 8% recycled yellow pine macro-particles; test 
samples were then 3D printed with the FFF technique. In 
order to appreciate the marine environment’s effects on the 
composite’s mechanical performance, accelerated ageing 
conditioning was applied before tensile and compressive 
testing was performed. Thermal analyses were also carried 
out, to better understand the behaviour of the material. The 
composite material’s performance under the mentioned 
loads was compared with those of the same solid wood. 

The potential use of the proposed sustainable composite is 
suggested in the conclusion. 

MATERIALS AND METHODS

PLAW COMPOSITE

The Natureworks’ ‘Biopolymer 4043D’ PLA product was 
chosen as the matrix of the PLAW composite. This product 
was primarily designed for filament production in 3D 
printing. The density of the PLA was 1.24 x 10-3 kg.m-3, the 
melting temperature was 154 °C, and the melt flow rate was 
2 x 10-2 kg.s-1. 

PLAW composite was reinforced with 8% recycled 
yellow pine, by weight. This optimal ratio was determined 
by considering the studies in the literature and additional 
testing by the authors [26].  

As the reinforcement, yellow pine sawdust was obtained 
from the waste of a wooden boat manufacturing workshop’s 
horizontal saw on the Bodrum Peninsula (Turkey). The wood 
fibres were sieved through a 5 x 10-4 m aperture. The wood 
fibres had an average density of 420 kg.m-3, a diameter between 
2 x 10-8 and 5 x 10-7 mm and a length between 5 x 10-2 and 
2 mm. No surface treatment was performed on the wood 
fibres. The relative moisture of the wood was measured as 
12% and it was dried in an oven at a constant temperature.

In Fig. 2, 10 cm long benchmark samples represent the 
quality of the printing of the PLAW composite using the 
equipment stated for this study. 

Fig. 2. Benchmark samples made by additive manufacturing using PLAW 
composite

FILAMENT PRODUCTION

PLAW composite pellets were used to produce the filament 
of 1.75 ± 0.1225 mm in a 20 mm twin screw extruder at 205 °C 
and with a screw speed of 230 rpm, while the maximum 
operating temperature of the setup was 210 °C. Water and 
air cooling was used during the process (Fig. 3). A roundness 
ratio with an error rate of 8% was found to be acceptable.
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Fig. 3. Temperature and humidity values   of the ageing cabinet for 1 day

SPECIMEN PRODUCTION

Tensile and compression test specimens were 
produced using a Creality brand and Cr-200b model 
FFF 3D printer. The printing temperature was set to 
208 °C, while the printing speed was 5 x 10-2 m.s-1. The 
layer thickness was determined as 12 mm. The raft 
was used to adhere the products to the heated glass 
tray during printing. A nozzle width of 6 mm was 
chosen for production, after experiencing clogging 
of the 4 mm diameter nozzle. The solid wood and 
PLAW composite specimen geometries were as shown 
in Fig. 5. For the compression tests, a 30 x 20 x 20 mm 
rectangular prism was used. Solid wood samples were 
prepared by using a CNC router.

ACCELERATED AGING

A standard CC1000ip weathering chamber from 
the Ascott company (shown in Fig. 6) was used for 
accelerated ageing, in accordance with ISO 9227 
(2017). The device was programmed for three testing 
durations (one, two and four weeks). During these 
aging periods, water spraying, a salty fog environment 
and drying cycle were applied at elevated temperatures 
and at equal time intervals, daily. 

 

 

CHARACTERISATION

Optical microscopy
Optical microscope measurements were made 

using a Bresser BioScience Trino Micoscope, to 
measure fibre lengths and diameters. 

Scanning electron microscope (SEM)
Microstructure analyses were performed on a 

Zeiss Sigma500 FESEM, using the SE2 detector. 
Specimen imaging of the tensile test cracks was 
performed at different magnifications, as seen 
in the line scale in Fig. 8, under 1.5-3.0 kV EHT. 
Before placement in the microscope chamber, 
the samples were fixed on aluminium stubs with 
double-sided carbon tape and sputter coated with 

5 nm gold.

Fig. 5. The geometry of the specimens for tensile testing

Differential scanning calorimetry (DSC)
Differential Scanning Calorimetry (DSC) 

analysis was used to determine the glass transition 
temperature and melting temperature, to analyse 
the effect of wood reinforcement on thermal 
properties by comparing them to PLA using a 
Perkin Elmer Diamond brand DSC. The materials 
were heated to 300 °C.

Fig. 4.  PLAW composite and wood samples in the ageing cabinet
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Thermogravimetric analysis (TGA)
Thermogravimetric analysis (TGA) was used to 

investigate thermal resistance and analyse the effect of wood 
reinforcement on endurance, by comparing it to PLA using 
a Perkin Elmer Diamond brand TGA. The materials were 
heated to 850 °C.

RESULTS AND DISCUSSION

According to the results of the tensile and compression 
testing of PLAW composite and solid wood, there is a 
significant difference between the strength values. Printing 
directions and fibre orientation have a significant effect 
on the strength of the composite. In addition, it was seen 
that aging has a remarkable degradation effect in both 
directions. After one month of aging, tensile values of 39% 
for the 0° orientation and 40% for the 45° 
orientation were observed. On the other 
hand, there was a 15% and 33% decrease 
in compressive values, respectively (Table 
1). Materials produced with a parallel fill 
geometry (0° orientation) show better 
strength in the tensile direction. Samples 
with a cross-fill geometry (45° orientation) 
are preferred when the force loading is not 
known exactly; they give the material an 
isotropic structure.

For solid wood samples cut parallel 
to the loading directions, the tensile 
strength of 85 MPa (in the control group) 
decreased to 56 MPa (-34%) at the end of 
one-month of accelerated ageing. As for 
the compression test, this value dropped 
from 59 MPa to 32 MPa (-46%) (Table 1). 
In addition, colour changes were observed 
on the surface of the aged samples.

Standard deviations of the test values 
were found to be relatively high in 
the mechanical tests. One of the most 
important reasons for this is that the filament diameter 
cannot be captured very accurately in the extrusion process, 

causing production errors in the filament roundness. Printing 
errors decrease the overall performance. For this reason, 
using a water cooling device instead of air cooling in filament 
production will reduce production errors [27].

From the DSC analysis, when the PLA was reinforced 
with wood, it was observed that the glass transition 
temperature increased from 59.83 to 62.37 °C, while the 
melting temperature decreased from 152.29 to 146.68 °C.  
As for the TGA analysis, it was seen that the PLA lost its 
mass significantly at 326.62 °C, while PLAW composites lost 
their thermal stability at 323.42 °C. It is logical for PLAW 
composite to have lower thermal properties than PLA because 
of the reinforcement process of PLA, where the material was 
extruded twice, which reduces the mechanical performance 
of the material. Better performance would be achieved if 
reinforcement and filament production were performed in 
the same extruder at the same time (Fig. 6). 

Fig. 6. DSC and TGA analysis of PLAW composite

Strength (MPa)

Materials Tests Orientation Control One week* Two week* One month*

PLAW
Tensile 

0° 21 20 (-5%) 19 (-10%) 15 (-39%)
45° 23 21 (-9%) 20 (-14%) 14 (-40%)

Compressive 
0° 19 18 (-5%) 17 (-11%) 16 (-15%)
45° 13 13 (-2%) 11 (-16%) 10 (-33%)

Solid Wood
Tensile 0° 85 71 (-16%) 65 (-23%) 56 (-34%)

Compressive 0° 59 53 (-10%) 40 (-33%) 32 (-46%)

* Values in parentheses are degradation ratios relative to the control samples

Table 1. Aging results
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SEM images show that parallel printed layers are very 
rigid as lamina but their adhesion performance was detected 
as being weak when in line with the thickness. Laminate 
performance was found insufficient.  Also, different 
combinations of printing parameters, such as printing 
temperature, speed and layer thickness, could have an effect 
on the results.

Fig. 7. Image of yellow pine sawdust in an optical microscope

As for ageing performance, the PLAW composite degraded 
more than solid wood because of the PLA’s biodegradable 
component. In addition, since the PLAW composite contains 
only 8% wood by weight, the composite tends to behave more 
like PLA [28]. In almost all cases, from the 2nd week, the 
degradation is more noticeable. The degradation of solid 
wood develops rapidly and suddenly, just as described in the 
literature [29,30] (Table 1).

CONCLUSIONS

In this study, the strength and environmental degradation 
of a PLAW composite material (which can be an alternative 
for solid wood elements that do not operate under heavy 
loads in boatbuilding) was studied in marine conditions. The 
proposed new material is sustainable because it is obtained 
from natural resources and waste; the proposed production 
method, additive manufacturing, is an option which allows 
designers to work freely. From tensile and compression 
testing, image analyses and thermal analyses, it has been 

revealed that PLAW composite is rapidly degraded by 
the marine environment and yet it can find specific 
uses, such as the production of decorative objects. 
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AbstrAct

With the increasing demand for efficient maritime logistic management, industries are striving to develop automation 
software. However, collecting data for analytics from diverse sources like shipping routes, weather conditions, historical 
incidents, and cargo specifications has become a challenging task in the distribution environment. This challenge gives 
rise to the possibility of faulty products and traditional testing techniques fall short of achieving optimal performance. 
To address this issue, we propose a novel decentralised software system based on Transfer Learning and blockchain 
technology named as BETL (Blockchain -Enabled Transfer Learning). Our proposed system aims to automatically 
detect and prevent vulnerabilities in maritime operational data by harnessing the power of transfer learning and 
smart contract-driven blockchain. The vulnerability detection process is automated and does not rely on manually 
written rules. We introduce a non-vulnerability score range map for the effective classification of operational factors. 
Additionally, to ensure efficient storage over the blockchain, we integrate an InterPlanetary File System (IPFS). To 
demonstrate the effectiveness of transfer learning and blockchain integration for secure logistic management, we conduct 
a testbed-based experiment. The results show that this approach can achieve high precision (98.00%), detection rate 
(98.98%), accuracy (97.90%), and F-score (98.98), which highlights its benefits in enhancing the safety and reliability 
of maritime logistics processes. Additionally, the computational time of BETL (the proposed approach) was improved 
by 18.9% compared to standard transfer learning.

Keywords: Logistic management, Blockchain, Transfer Learning, Marine ecosystem, Vulnerability detection

INTRODUCTION

In recent years, maritime-related issues have been paid much 
attention since maritime has been known to play an important 
role in developing the economy [1]–[4]. However, maritime 
activities, including shipping and port activities, have a large 
number of disadvantages, such as high pollutant emissions 
(including ship and port activities), low operational efficiency, 
high-cost logistical activities, high fuel consumption, maritime 
safety… etc. [5]–[11]. Containerisation has played a crucial role in 

accelerating global trade and establishing extensive global supply 
chains, contributing significantly to economic globalisation in the 
20th century [12][13]. However, progress in container shipping 
has not kept up with the rapid advancements in international 
trade and supply chains [14][15]. Businesses now demand more 
timely and transparent deliveries with enhanced traceability, 
which traditional container shipping struggles to meet [16]
[17]. The movement of containers involves complex bilateral 
interactions among various entities in the logistics ecosystem, 
resulting in delays, inefficiencies, and susceptibility to fraud 
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[18][19]. Paper-based processes and numerous permissions 
and transactions further contribute to inefficiencies towards 
hard evidence of its effectiveness [20]. As a result, there is 
a need for innovative solutions to address these vulnerabilities 
in maritime logistics [21]. To tackle these challenges, this 
manuscript introduces a groundbreaking solution: Blockchain-
Enabled Transfer Learning. By leveraging the transparency and 
immutability of blockchain and the analytical capabilities of AI, 
the proposed system aims to detect and mitigate vulnerabilities 
in real time, enhancing the security and reliability of the logistics 
ecosystem [22][23]. The integration of blockchain and Transfer 
Learning introduces a decentralised architecture with smart 
contracts, automating trust and collaboration among multiple 
stakeholders in the logistics chain [24]. A comprehensive testbed-
based experiment validates the efficacy of the solution, fortifying 
the logistics industry against vulnerabilities and disruptions, while 
improving global maritime trade security and efficiency [25][26].

In traditional maritime logistics, the seamless coordination 
among diverse entities relies on efficient communication 
and monitoring within a shared workspace [27]. As cargo is 
transported by ship from one port to another, several pieces of 
documentation must also be moved and verified by multiple 
parties such as bill of lading, packing lists, certificates of origin, 
commercial invoices, and export licenses [28]. In addition, 
a vessel’s crew, who are not necessarily nationals of the flag 
state, needs to manage, verify, and validate seafaring crew 
certificates in compliance with global regulations such as the 
IMO’s International Convention on Standards of Training, 
Certification and Watchkeeping for Seafarers (STCW) and 
the Convention on Safety of Life at Sea (SOLAS) [29][30]. 
However, in a remote working environment, ensuring seamless 
synchronisation becomes more challenging, leading to potential 
code errors, oversights, and mistakes [31]. Blockchain adoption 
in the maritime supply chain for containerised international 
trade faces several barriers [32][33]. These barriers include a lack 
of support from influential stakeholders and a lack of government 
regulations [34]. The key stakeholders in this adoption process 
are container lines, ports, beneficial cargo owners, freight 
forwarders/third-party logistics, and customs authorities [35]
[34]. Additionally, there are non-technical barriers such as 
resistance to change and a lack of awareness and understanding 
that should not be underestimated [36]. To successfully 
implement blockchain in the shipping industry, certain design 
principles should be considered, including immutability, 
decentralisation, security, privacy, compatibility, scalability, 
inclusiveness, and territoriality [37][38]. The implementation 
phase can be influenced by different approaches, which can 
affect the likelihood of adoption by industry stakeholders [39]. 
Actually, intelligent methods such as machine learning and 
artificial intelligence, which could be successfully applied to 
many fields such as waste and energy management, optimization, 
planning, prediction, and error detection aiming to generate 
a powerful collaboration [40]–[44], could have the potential to 
revolutionise the maritime sector through improved efficiency, 
safety, and environmental sustainability [45]–[47].

Secure supply chain management methods (to protect blockchain 
from attack) can be achieved through the implementation of 
blockchain technology. Blockchain provides decentralised and 

immutable data storage, enabling trust and transparency in 
supply chain networks [48][49]. By using blockchain, a digital log 
of all propagating information can be maintained, allowing for 
the validation of official updates and the rejection of potentially 
malicious payloads [50][51]. Additionally, the use of attribute-
based access control models, in combination with blockchain, can 
enable decentralised, fine-grained, and dynamic access control 
management in supply chain systems, ensuring data privacy 
and network scalability [52]. The integration of blockchain with 
supply chain management also helps minimise the interference of 
middleman attacks and allows the discarding of forged products, 
thereby maintaining integrity and authentication throughout the 
supply chain. To summarise the state-of-the-art literature, the 
problem scenarios are listed below.

Over-centralisation: Consider S as the comprehensive 
set encompassing all entities actively engaged in maritime 
logistics, C is the set of all communication channels between 
the entities in S, and R is the set of all associated risks. The 
problem of centralised maritime logistics is the minimisation 
of the following expression:

f (S, C, R) = Σ (r * p(r))     (1)

where p(r) is the probability of risk r occurring.
Data Security in remote workplace: Let G be the probability 

of a collaborative effort being successful, D is the distance 
between the collaborating entities and H is the disparity in 
hardware and software accessibility between remote and 
in-office workers. Then, the problem of the probability of 
a collaborative effort can be modelled as follows:

P = f (D, H)       (2)

where f is a function that maps the distance and disparity to 
the probability of collaboration, and D and H are continuous 
variables that represent the distance between the collaborating 
entities and the disparity in software accessibility, respectively. 
The statistical analysis for the estimating function f has the 
inferences that G decreases as D increases and as H increases. 

Data sharing dilemma: Maritime supply chain stakeholders 
are concerned with sharing key business information, such 
as customer, supplier, and freight data. This is because many 
forwarders and intermediaries benefit from information 
asymmetry, which could impede widespread adoption. If we 
let T be the time it takes to complete a task, then it can be 
modelled as follows:

T = g(H)        (3)

where g is a function that maps the disparity to the time taken 
to complete a task. The problem is that T is directly proportional 
to H.

RELATED wORKS

The use of electronic bills of ladings has been shown to enhance 
the efficiency of shipping operations, ship finance, and marine 
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insurance. In contrast, Papathanasiou et al. [52] proposed that 
the shipping industry could derive advantages from blockchain 
technology in areas such as document exchanges, optimising 
container utilisation, intelligent transportation, and precise container 
weighing. Hamidi et al. [53] and Zhong et al. [54] suggested that 
the adoption and effective use of blockchain by container lines 
could contribute to reducing price competition between them. 
Furthermore, Hasan et al. [55] demonstrated a smart-contract 
solution involving smart containers equipped with Internet 
of Things (IoT) sensors to efficiently manage shipments. They 
showcased how blockchain enables real-time tracking of items 
like vaccines, including monitoring temperature, humidity, and air 
pressure. In their conceptual study, Lambourdiere and Corbin [56] 
proposed that blockchain can have a positive impact on information 
exchange, supply chain coordination, visibility, and performance 
within maritime supply chains.

Taking a sustainability perspective, Jovi´c et al. [57] conducted 
a literature review and categorised the benefits of blockchain in 
maritime supply chains into economic, social, and environmental 
advantages. Meanwhile, Li et al. [58] explored pilot applications 
in maritime supply chains and identified significant benefits 
from blockchain, including expediting processes, reducing 
costs related to documentation, ensuring secure records for 
food safety, enabling real-time tracking, facilitating efficient 
coordination across various modes of transport, and improving 
compliance with shipment regulations and marine insurance 
requirements. Lastly, Munim et al. [59] conducted a review 
of blockchain literature in a maritime context, revealing 17 
potential uses of blockchain technology. The state-of-the-art 
studies focused on the risk analysis of blockchain-integrated 
systems (BISs) in container shipping. However, it failed to 
capture the full range of risks and uncertainties associated 
with other aspects of maritime logistics services [60][61]. The 
study does not provide a comprehensive analysis of the potential 
mitigation strategies or recommendations for managing the 

identified risks in container shipping BISs. In general, the cause 
and effect of malicious software is presented in Fig. 1.

Fig. 1. Cause and effect of malicious software

BLOCKCHAIN-ENABLED TRANSFER 
LEARNING (BETL): GENERIC 

ARCHITECTURE
The proposed architecture ensures efficient and accurate 

vulnerability detection, security, scalability, trust, transparency, 
and reliability in a multiparty maritime logistics ecosystem [62]
[63]. The overall system is divided into two parts: a transfer learning 
(TL) model that predicts software vulnerabilities, and a blockchain-
based system that ensures security, trust, and transparency [64]
[65]. InterPlanetary File System (IPFS) is integrated to improve the 
scalability and efficiency of data storage. The TL model is trained 
on a large dataset of software vulnerabilities to learn the patterns of 
vulnerabilities. The model can then be used to predict vulnerabilities 
in new software. The blockchain-based system uses a distributed 
ledger to store vulnerability information. This ensures that the 
information is secure, transparent, and tamper resistant. An IPFS 
peer-to-peer file storage system is used for scalable and efficient 
storage. The BETL architecture assumes a multiparty ecosystem, 
as shown in Fig. 2. The distinctive roles of various stakeholders 
include the following.

Fig. 2. BETL system architecture
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There is also the possibility of human error in the reviewing 
process. In  uch a scenario, transfer learning can greatly help 
reduce this risk-oriented human intervention in the testing 
process of vulnerabilities. In the proposed system, a transfer 
learning model is trained on a dataset of 20,724 source code 
files from the six most common languages (C, C++, Python, 
Java, Ruby, and C#). The dataset is categorised into vulnerable 
and non-vulnerable codes, based on vulnerability thresholds. 
The National Institute of Standards and Technology (NIST) 
categorises the level of severity as low, medium, or high. In 
this work, we propose a non-vulnerability score range mapping 
with a reverse threshold manner to that of the NIST standard. 
This is mainly for the following reasons:

•  The transfer learning model performs learning for a non-
vulnerability score, i.e. the prediction score tells us how 
well the source code is written.

•  Software Development LifeCycle (SDLC) is concerned with 
ensuring error-free code at the production level. Having 
a non-vulnerability score, rather than a vulnerability score, 
for mapping the category range is more intuitive for the 
lead developerto make better decisions.

We mapped the non-vulnerability score range with the 
category of secureness of source code files, as shown in Table 2. 
This mapping can be customised, according to the requirements 
and policies of the organisation, and is controlled by the 
blockchain validator nodes. Once source codes are uploaded, 
the smart contract invokes the transfer learning model to check 
for vulnerability. The model predicts the non-vulnerability score 
for the source code and the score is mapped to the secureness 
category. The lead developer can then take appropriate action, 
based on the secureness category of the source code. This transfer 
learning-based vulnerability detection system can help to improve 
the efficiency and accuracy of vulnerability detection in maritime 
logistics. It can also help to reduce the risk of human error in the 
reviewing process. Table 2 summarises the differences between 
AI-based and transfer learning-based vulnerability detection.

Tab. 1. AI-based learning versus transfer learning

Feature AI-based learning transfer learning

Model 
training
F: Z→Rd

Z Rd,
d → #

vulnerabilities

where  Z is the ith 
vulnerability  

and  is its label.  
AI requires n to be high

Let Zs  and Zt  be the source 
and target domains, 
respectively. Let fs  be  

a pre-trained model on 
source domain Zs .  

TL leverage fs  to reduce 
training time

Accuracy
where I(x)  

is an indicator function

ft  is a model learned  
on Zt  by leveraging 
knowledge from fs .  

ft (zt ) is the prediction  
of the model for the 

vulnerability zt  

scalability

T = a×Db  
where T is the training 
time, D is the dataset 
size with a and b as 

constants

T = a×Sb + c×Td  
where T is the fine-tuning 
time with S and T as the 
source and target dataset 

size involving the constants 
a, b, c, and d

cost-
effectiveness

Can be expensive to 
develop and deploy

Can be more cost-
effective than AI-based 
vulnerability detection

Technology Solution Provider (TSP): The TSP is an 
authenticated entity in the logistics ecosystem with a unique 
identifier. It is responsible for writing code, following 
the requirements of the assigned module. The choice of 
programming languages depends on the requirements and 
varies widely based on the application. The TSP is provided 
with login credentials to access the code submission platform 
and has the privilege of performing unit testing. It is assumed 
that the TSP submits its code over a secure network in a remote 
scenario.

Consortium Network: We opted for a consortium blockchain 
as it balances the security of a private blockchain and the 
flexibility of a public blockchain. The network is formed and 
operated by a group of trusted entities, regulatory authorities, 
industry associations, security experts, and quality managers. 
This ensures that the blockchain is highly secure and resistant to 
attack. Validator nodes are responsible for reaching a consensus 
on the order of transactions and ensuring that no unauthorised 
changes are made to the blockchain. They do this by using 
a voting mechanism to approve new blocks of transactions. 
Lightweight nodes can participate in the network by reading the 
blockchain and querying information. However, they cannot 
participate in the consensus process.

InterPlanetary File System: An IPFS private network provides 
secure and decentralised storage and access to data about the 
supply chain. This can help to improve the efficiency of learning 
models by reducing the need to transfer data between different 
systems.

ARCHITECTURAL DESIGN

The BETL architecture consists of three main components: 
a vulnerability scanner, a blockchain-based decentralised 
infrastructure, and a private IPFS network shared by the 
validators. There are four major entities including technology 
solution providers, validator nodes, lightweight nodes, and IPFS 
storage architecture. Data and information exchanged among 
entities are stored on the blockchain as immutable transactions. 
A smart contract deployed on the blockchain governs the 
interactions and automates various functionalities. The core 
functionalities of the proposed architecture are twofold:

•  Transfer Learning-based source code vulnerability 
scanning: This component uses artificial intelligence to 
identify vulnerabilities in the source code.

•  Blockchain-based decentralisation for vulnerability 
prevention: This component uses the blockchain to 
store information about vulnerabilities and to prevent 
vulnerabilities from being exploited.

TRANSFER LEARNING-BASED  
VULNERABILITY SCANNING

During the outsourcing of the development process, 
developers may purposefully or inadvertently make certain 
mistakes that could result in a  vulnerable application. 
Traditional vulnerability detection in software testing 
requires human intervention, making it time-consuming. 
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BLOCKCHAIN-BASED DECENTRALISATION FOR 
VULNERABILITY PREVENTION

The blockchain-based decentralised system for prevention 
consists of a smart contract that acts as the core logic unit of the 
system [66][67]. The smart contract is used to automate certain 
tasks on the blockchain, such as testing code for vulnerabilities 
and storing the results of the testing securely. When a developer 
uploads code for testing, the smart contract invokes a transfer 
learning to test the code for vulnerabilities. The neural network 
is trained on a dataset of known vulnerabilities, so that it can 
identify vulnerabilities in new code [68][69]. If the model 
detects vulnerability in the code, the smart contract stores the 
vulnerability information in the blockchain. The smart contract 
also stores the results of the testing, which indicates whether 
the code is vulnerable or not. If the code passes the test, the 
smart contract stores the results of the testing in the blockchain 
and stores the source code file in IPFS. IPFS is a distributed file 
storage system that makes it difficult to modify or delete files.

The access control mechanism of the smart contract ensures 
that only authorised users can access the data stored in the 
blockchain. This helps to protect the confidentiality and integrity 
of the data. The blockchain-based decentralised system for 
prevention provides several benefits, including:

Automated testing: The smart contract can automate the 
process of testing code for vulnerabilities. This can help to save 
time and improve the efficiency of the testing process.

Secure storage: The blockchain is a secure and tamper-proof 
distributed ledger. This helps to ensure that the data stored 
in the blockchain is protected from unauthorised access and 
modification.

Traceability: The blockchain provides a tamper-proof record 
of all changes to the data stored in the blockchain. This helps to 
ensure that the data is always accurate and reliable.

Pseudo-transparency: The blockchain is a pseudo-transparent 
ledger that is accessible to everyone. This helps to ensure that 
the testing process is transparent and accountable.

IPFS STORAGE FOR ANALYTICS

The IPFS ‘DHT’ is a Distributed Hash Table used to store 
the hashes of all the files that are stored in the Kademlia overlay 
network. N is the set of nodes in the IPFS DHT network [70]. 
Each node n N maintains a routing table Tn that stores the 
location of other nodes in the network. The routing table is 
a hash table that maps the hashes of the nodes to the addresses 
of the nodes. To search for a file, a node n sends a query q to 
the DHT. The query is a hash of the file that is being searched 
for. The query is routed to the nodes that store the hash of the 
file. The routing table is a distributed hash table, so the query is 
routed to the nodes that are most likely to store the hash of the 
file. When a file is stored in the DHT, it is split into blocks and 
distributed to multiple nodes. The blocks of a file are replicated 
using a hash function to multiple nodes to ensure availability. 
The hash function is used to generate a unique identifier for 
each block. The blocks are then replicated to nodes that have 
the same hash identifier. The fault tolerance of the IPFS DHT 

network is achieved through replication. The internal working 
of IPFS can be represented by the following functions:

Fig. 3. IPFS-DHT network parameters

Content Publishing:
1.  The blockchain validator imports the content into its 

local IPFS private network and assigns it a unique content 
identifier (CID).

2.  The IPFS instance performs a DHT traversal to locate the 
closest peers to the CID by XORing the distance of the 
Peer ID from the SHA256 hash of the CID.

3.  The IPFS instance stores the peer record with the closest 
peers.

Content Retrieval:
1.  The requester performs opportunistic Bitswap requests 

to already connected peers for the CID.
2.  If the requester does not find the content, the DHT 

performs a multi-round iterative lookup to resolve a CID 
to a peer’s Multi-addresses as a traversal, to find a provider 
record storing the peer.

3.  The requester connects to the peer and fetches the content 
that maps CID using Bitswap.

Fig. 4. Content publication and retrieval in IPFS
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ExPERIMENTAL SETUP

We conducted experiments on a testbed that integrated 
transfer learning, blockchain, smart contracts, and private IPFS. 
The testbed consisted of 8 nodes, which simulated 2 blockchain 
validators, 4 lightweight nodes, and 2 technological solution 
providers with the specified system configuration.

Transfer learning environment: A gated recurrent units 
(GRU) model was used to extract features from the source 
code to learn long-term dependencies, which is important 
for source code analysis. We selected the Robustly Optimised 
BERT Approach (RoBERTa) model with AdamW optimiser, 
to classify the features extracted by the GRU model and for 
pre-training, to detect code vulnerabilities. The base model 
was instantiated using ResNet architectures to extract features 
from the ISO image and learn deep features. We also employed 
convolutional neural networks (CNN) to classify the features 
extracted by the ResNet model and identify vulnerabilities in 
the ISO image. It was important to freeze the layers from the 
pre-trained model because we did not want the weights in those 
layers to be re-initialised. We performed experiments on three 
sets of datasets containing vulnerable and non-vulnerable C and 
C++ functions. The first three datasets (LibPNG, PidGIN, and 
VLC) were collected from publicly available resources. They 
contained a total of 118 vulnerable and 15,318 non-vulnerable 
source code files. To address the class imbalance problem, 
the researchers also included 5,200 vulnerable sample C/C++ 
files from the Draper Vulnerability Detection in Source Code 
(VDISC) dataset. The collected files were split into a 9:5:5 ratio 
to get the training, validation, and test sets. The resulting dataset 
consisted of 9817, 5453, and 5453 source files for the training, 
validation, and test sets, respectively.

Tab. 2. Technology stack

software / 
Hardware Version

Platform/OS Ubuntu 18.04.6 LTS

Processor Intel Core i7-9700K, frequency 3.6 GHz, maximum 
turbo frequency 4.90 GHz, 8 CPU cores, 8 threads

System 
architecture 64-bit operating system and processor

Memory (RAM) 16 GB

Framework Ganache, Truffle, Plasma, Pre-trained model: 
RoBERTa,

Ganache 2.5.4
Lightweight Ethereum blockchain network

Node.js
16.15.0

JavaScript runtime environment for building 
blockchain network

Truffle
5.5.16

Framework for writing and deploying smart 
contracts

Web3.js
1.7.3

JavaScript library for interacting with the 
Ethereum blockchain

IPFS 0.13.0
Distributed peer-to-peer file system for storing data

IPFS HTTP 
Client

53.0.1
JavaScript library for interacting with IPFS

Smart contract Solidity v0.8.21

Blockchain-based decentralised environment: An Ethereum 
client was locally instantiated by deploying ganache-cli and 
with JSON RPC live at port 8545. Ganache enabled the upload 
of smart contracts onto Ethereum and launched custom-built 
DApp. The Truffle framework hosted the DApps with a nested 
chain structure that had contract codes, migrations, and truffle.
js. Web3.js facilitated interaction between smart contracts and 
the blockchain [71]. The Metamask extension was used for 
browser support. The plasma contract was designed to track and 
archive only final on-chain proofs, to counteract multiple exits 
at an indistinguishable range. The contract maintained a list of 
exitable maps that were updated on the issue of each on-chain 
proof and the transaction hosted at Ethereum [72]. A plasma 
contract called main_chain was deployed to the Ethereum core. 
MainChain.sol had functions to generate Merkle proof of the 
issued transactions, validate the signature from the physical 
nodes, and handle submitted blocks. The child_chain console 
managed transactions and blocks that were posted when an 
event was triggered in the main_chain. The child chain contract 
hosted an RPC server on an 8546 port, that smoothed client 
interfacing. A Python-based wrapper was scripted for client 
applications, to wrap with child_chain RPC API.

RESULTS AND DISCUSSION

The development environment was set up in accordance 
with the technical details listed in Table 2. We evaluated the 
performance of RoBERT on GRU architecture using different 
epochs and model sizes. The experiments were conducted on 
a training set of 9817 source code files and a validation set of 
5453 source code files. The model sizes were 8, 32, 64, 128, 
256, and 512. The model performance was evaluated on a test 
set of 5453 source code files. We observed that the accuracy of 
the models increased linearly with the number of epochs. The 
accuracy results on the training, validation, and test sets with 
RoBERTa, for an epoch of 10 and 30, are shown in Fig. 5 and 
Fig. 6, respectively. GRU with RoBERTa with a model size of 512 
achieved a test accuracy of 98% and 97% for an epoch of 10 and 
30, respectively. The training accuracy increased with the model 
size, as larger models can make more complex adjustments to 
fit the training data. However, this can lead to overfitting, where 
the model becomes too attuned to the training data and does 
not generalise new data well. Our findings suggest that the 
optimal model size for avoiding overfitting is 280. This is the 
size where the validation accuracy, which measures the model’s 
ability to generalise new data, is highest. The testing accuracy, 
which measures the model’s performance on unseen data, is 
highest at a model size of 515. This suggests that a model size 
of 515 strikes a good balance between fitting the training data 
and generalising it to new data. Model sizes of 10 and 80 show 
signs of overfitting, as the training accuracy is much higher than 
the validation accuracy. This is because these models are too 
complex and have memorised the training data too well. Model 
sizes 415 and 515 show signs of underfitting, as the training 
accuracy is much lower than the validation accuracy. This is 
because these models are not complex enough to capture the 
inherent complexity of the data.
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Fig. 5. Accuracy for RoBERTa with 10 epochs on different model sizes

Fig. 6. Accuracy for RoBERTa with 30 epochs on different model sizes

Table 3 shows the performance of the proposed BETL 
method on two vulnerability datasets: LibPNG and PidGIN. The 
performance metrics are precision, detection rate, accuracy, and 
F-score. The results show that BETL on LibPNG has a slightly 
higher precision and accuracy than on PidGIN. However, 
the proposed method on PidGIN has a higher detection rate, 
while BETL on LibPNG is better at avoiding false positives. 
The computation time of BETL on LibPNG is slightly higher 
than PidGIN on BETL.

Tab.3. Performance Analysis of Vulnerability Datasets  
for Proposed BETL method

Measures LibPNG PidGIN

Precision 98.99 97.97

Detection Rate 98.98 97.68

Accuracy 97.98 97.12

F-score 98.98 99.02

Computation Time (s) 51.89 49.64

The training loss is the loss that is calculated on the training 
data, while the validation loss is the loss that is calculated on the 
validation data. The validation loss is a more accurate measure 
of the model’s performance on unseen data. The results show 

that the training loss decreases as the model size increases. This 
is because larger models are able to learn more complex patterns 
in the data. However, the validation loss does not decrease at 
the same rate. This suggests that the models are overfitting 
the training data. The best model size is the one that has the 
lowest validation loss. In this case, the best model size is 415. 
This model has a validation loss of 0.0125, as shown in Fig. 7, 
which is the lowest of all the models. The training loss is always 
lower than the validation loss. This is because the training loss 
is calculated on the data that the model has already seen, while 
the validation loss is calculated on the data that the model 
has not seen before. The training loss decreases more rapidly 
than the validation loss, as the model size increases. This is 
because larger models are able to learn more complex patterns 
in the data, but they are also more likely to overfit the training 
data. The validation loss eventually plateaus as the model size 
increases. This suggests that there is a limit to the amount of 
improvement that can be achieved by simply increasing the 
model size.

Fig. 7. Loss in RoBERTa pre-training on different model sizes

The training loss decreases as the number of epochs increases 
for all CNN architectures. This is because the model is able to 
learn the features of the data better as it is trained for more 
epochs. The validation accuracy increases as the number of 
epochs increases for all CNN architectures. This is because the 
model is able to generalise unseen data better as it is trained for 
more epochs. ResNet-50 has the lowest training loss and highest 
validation accuracy for all numbers of epochs. This is because 
ResNet-50 has more layers and parameters than the other CNN 
architectures, which allows it to learn more complex features of 
the data. The difference in training loss and validation accuracy 
decreases as the number of epochs increases. This is because 
the model becomes more confident in its predictions as it is 
trained for more epochs. ResNet-18 has the lowest number of 
parameters, followed by ResNet-34, ResNet-50, ResNet-101, and 
ResNet-152. This is because ResNet-18 has the fewest layers. 
The training time increases as the number of epochs and the 
number of parameters increases, as depicted in Fig. 8. This is 
because the model must do more computations to train for 
more epochs and with more parameters. It is inferred that the 
ResNet-50 architecture is the best choice since we are dealing 
with only limited ISO images that require high accuracy.
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Fig. 8. Model training speed on different epochs

CONCLUSION

We propose a novel BETL system for optimising maritime 
logistics by harnessing the transparency and immutability of 
blockchain and the analytical capabilities of transfer learning. 
We developed a non-vulnerability score range map for the 
effective classification of operational factors. To ensure efficient 
storage over the blockchain, we seamlessly integrated IPFS with 
the blockchain and conducted a testbed-based experiment 
to demonstrate the effectiveness of BETL for secure logistic 
management. The results of the experiment show that BETL 
can achieve high precision (98%), detection rate (98.98%), 
accuracy (97.9%), and F-score (98.98). This highlights the 
benefits of BETL in enhancing the safety and reliability of 
maritime logistics processes. Additionally, the computational 
time of BETL was improved by 18.9%, compared to standard 
transfer learning. Beyond its present application, BETL has the 
potential to extend its utility to other areas of maritime logistics, 
such as port operations and cargo management. Furthermore, 
we envision enhancing the usability by incorporating a user-
friendly graphical interface for a seamless experience.
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AbstrAct

It is critical to estimate the workforce requirements for the production of blocks in shipbuilding. In this study, the 
number of workforce (man-day) required for the production of a passenger ship’s double bottom block was estimated. 
Initially, the production of the block was observed, and the average working performance of the mounting, welding, 
and grinding workers was recorded. Block drawings were examined and the work required was calculated. The 
amount of work increased, depending on any revisions required due to incorrect or incomplete designs. The average 
working performance of an employee is uncertain due to environmental factors, including the weather and working 
conditions, as well as health (both physical and mental). A two-stage stochastic programming model with recourse 
was established to estimate man-day required and a Sample Average Approximation (SAA) technique was used to 
obtain a near-optimum solution. The results of the study were compared with shipyard records and an agreement of 
approximately 90% was achieved.

Keywords: Shipbuilding; Block Production; Planning; Stochastic Modelling

INTRODUCTION

Shipbuilding comprises many complex activities which 
are carried out concurrently and necessitate systematic 
engineering [1,2]. These activities include steel hull 
manufacturing, pipe fitting, painting, machinery, and wiring. 
One of the initial phases of shipbuilding (after design), includes 
cutting the sheets. Following that, blocks are manufactured 
by welding the parts in a certain order [3,4]. After the blocks 
are transferred to the building berth, mounting and welding 
are completed, respectively. Thus, the hull structure of a ship 
is produced [5]. Poor decisions in process planning can lead 
to delays in delivery and, therefore, major cost overruns 

[6,7]. A production planning system that accurately reflects 
the production environment can ensure a high on-time 
performance and improve competitiveness [8,9]. Workforce 
planning, especially in the block manufacturing phase, is one 
of the major concerns of shipyards. Efforts to establish efficient 
production planning continue to improve the shipbuilding 
process. On the other hand, it is considered that planning in 
shipbuilding mostly depends on the experience of the staff [10]. 
There is a lack of academic studies on shipbuilding planning 
and increasing efficiency [8,11]. Predicting the required labour 
force (the objective of this study) would be very useful for 
proper planning. This may also provide a positive contribution 
to delivery performance and cost. On-time delivery is very 
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important for ship-owners and is essential for a shipyard if 
it is to receive new ship orders [12-14].

A  literature review revealed that improving block 
production and planning in a shipyard, the transportation 
of blocks, spatial planning, mounting and welding processes 
on the building berth, reducing duration, automatic process 
planning in mounting operations, and man-hour estimations 
have been examined by various studies. Lei et al. [15] proposed 
a mounting sequence planning method based on reasoning. 
In the study, the mounting sequence was optimised with 
geometric constraints and the fuzzy method. Porath et al. 
[16] developed a measurement-supported mounting method 
to shorten the mounting time. In order to determine the 
capacity requirement in the preproduction of a block, Kafalı 
et al. [17] examined the process from a stochastic perspective. 
Kang et al. [6] presented a block mounting sequence planning 
method by emphasising the optimum mounting time and 
welding deformations. Urbanski et al. [18] investigated the 
technological usefulness of panel line on the basis of welding 
technologies. Jeong et al. [19] created a new spatial layout 
planning model for large blocks based on the greedy algorithm. 
Afzalirad and Rezaeian [20] developed a new resource-
constrained parallel machine planning model for a block 
mounting scheduling problem. Wang et al. [21] proposed 
a scheduling model for panel line, including a rolling horizon 
and rescheduling, by considering many uncertain factors. 
Yuguang et al. [22] developed a hull assembly line balancing 
model based on the particle swarm optimisation algorithm. 
A method for planning the assembly of ship hulls that focuses 
on a welding sequence was developed by Iwankowicz [23]. 
In this study, an intelligent hybrid sequencing method was 
obtained, using fuzzy clustering, case-based reasoning and 
evolutionary optimization to determine the optimal assembly 
order. Kwon and Lee [24] focused on spatial planning based 
on the assembly of blocks. A mixed integer programming 
model and a two-stage heuristic algorithm was developed. 
Hadjina et al. [25] presented a new methodology based on the 
simulation of the robotic profile production line. By applying 
lean manufacturing to the panel line, Oliveira and Gordo [26] 
obtained substantial savings in both time and costs. Hur et 
al. [27] presented a man-hours estimation system, in terms 
of certain shipbuilding activities. Hu et al. [28] developed 
a heuristic hybrid algorithm for the block-building area, 
which is accepted as being an important bottleneck in the 
shipbuilding process. Zheng et al. [29] developed a spatial 
scheduling system by using the greedy search algorithm with 
the help of data obtained from a large ship. Liu et al. [30] 
applied discrete event simulation by modelling the stochastic 
events for dynamic spatial scheduling. Wahidi et al. [31] 
achieved a significant gain, in terms of man-hours, with 
the robot welding technology applied to the double bottom 
block. Liu and Jiang [32] proposed three different models 
utilising simple linear regression, multiple linear regression, 
and an artificial neural network, to estimate man-hour. They 
concluded that the artificial neural network model provides 
more accurate and reliable results. 

Based on the above-mentioned studies, it can be said that 
there is not enough academic study regarding the estimation 
of the workforce required in ship block production. The usual 
practice in shipyards is to use data from previously built 
ships to estimate the operating time or the expected number 
of working hours for a given sub-process. Similarly, it can 
be argued that production costs can be calculated using the 
same approach. However, this is not a systematic practice. 
There are techniques for man-hour estimation in many sectors 
[33,34] and new methods can be applied for a more realistic 
approach in shipyards. On the other hand, Kafalı et al. [17] 
conducted an analysis of the workforce, specifically focusing 
on preproduction workstations. They developed a two-stage 
stochastic program to determine workforce requirements. 
They mentioned that the model they presented could be 
used to optimise the workforce and enhance the production 
process in shipbuilding. Additionally, they suggested the 
need for a more comprehensive model that encompasses 
other production phases in ship block production. In this 
study, we address this issue by expanding on the previous 
study and incorporating all production phases involved in 
the production of a passenger ship’s double bottom block; 
grinding activity is included in the model, to obtain more 
realistic results. Moreover, the solution of the stochastic 
program is compared with real data and the results are 
validated. 

The remaining sections of this paper are organised as 
follows. First, general information about block production and 
a description of the problem are presented in the introduction. 
In the methodology section, the mathematical model is 
introduced, the steps of the solution method are explained, 
and a case study for a double bottom block is then presented. 
This is followed by the results and a discussion section. Finally, 
the conclusions are presented.

ACTIVITIES IN THE PRODUCTION OF SHIP BLOCKS

The block production process starts with the transport of 
plates and sections from the stockyard to the production area. 
The shot-blasted and priming-painted plates are prepared for 
CNC cutting, based on the design department’s data. After 
the marking and cutting process, the pre-production phase 
starts with the related parts [35].

Blocks are manufactured by joining the plates and 
profiles. The first step in the joining process is the 
mounting of the parts by spot-welding. Mounting is 
crucial for the healthy continuation of the welding and 
grinding processes. After that, the full welding process is 
performed by an appropriate welding method, where gas 
metal arc welding is generally preferred. Then, grinding is 
performed on the welds where necessary. In this process, 
the grinding wheel, in which the abrasive grains are held 
together, is used to remove tiny chips from the welds. 
Examples of these three processes and the main titles of 
the products obtained during the block manufacturing 
process are shown in Fig. 1 and Table 1 [36].
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Mounting Full welding Grinding

Fig. 1. Block production activities

Tab. 1. Interim products and definitions

Interim product Description Construction view

C, small group Constructions made by welding separate 
components.

D, module Combination of C and C.

E, panel Combination of large plates.

F, profiled panel Combination of profiles and panel.

G, sub block Combination of F and D.

H, bent panel Combination of large plates by bending.

K, block Combination of F and G.
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The bottom structure forms a flange of the hull girder. 
Therefore, the bottom structure is important, in terms of 
longitudinal strength. While contributing significantly to 
the strength, it distributes the local loading during docking. 
In addition, the bottom structure of a ship has to withstand 
bending stresses as well as water pressure. Single and double 
bottom structures are the two different forms of bottom 
structures. Moreover, longitudinal or transverse framing is 
applied to bottom structures [35]. A longitudinally framed 
double bottom block is examined in this study. 

DEFINITION OF THE PROBLEM

Shipbuilding is a labour-intensive production process 
but it is hard to determine the exact workforce required in 
production processes. Revisions due to incorrect or incomplete 
designs, customer demands, and the reworking of defective 
manufacturing may occur. Besides this, the performance of 
employees is variable [37].

This study aims to calculate the workforce required in 
the C, D, E, F, G, H, and K production phases of a double 
bottom block belonging to a passenger ship. For this purpose, 
the average working performance of mounting, welding, 
and grinding workers was determined by conducting field 
observations. All the drawings of the block were examined 
and the amount of work required for mounting, welding, and 
grinding each interim product was calculated, and yet the 
work to be done, depending on revisions and errors, increases 
and becomes variable. Working conditions and the weather, as 
well as the mental and physical health of an employee, cause 
the average working performance of a worker to fluctuate. 
Various measures are taken to prevent possible delays in 
the production process due to the increased workload and 
varying worker performance. For example, the production 
process can be compensated for by shifting workers from 
another compartment to the disrupted one. However, the cost 
of newly added workers would be higher than that of those 
already employed because the required tools and equipment 
should be moved to the relevant compartment; adaptation 
to the new work area would be required.

Considering the aforementioned situations, a mathematical 
model (called a ‘two-stage stochastic recourse model’) was 
created to calculate the man-day for mounting, welding, 
and grinding activities, to prevent unexpected cost increases 
and delays. It is difficult to obtain real solutions to two-
stage mathematical models and, thus, the Sample Average 
Approximation (SAA) technique was used in the solution 
of the model. Two stochastic situations were defined when 
creating the scenarios to be used in the solution. The first is 
the increase in workload, due to revisions and the rectification 
of defective manufacturing, and the second is the average 
performance of the workers. The increase in workload was 
followed up by the planning department of the shipyard. 
Accordingly, a 1-2%, 5-10%, 10-15%, and 15-20% range of 
increase in the E-F, C-D, G-H, and K production phases 
was observed, respectively. The examinations made in the 
production area show that the average worker’s performance 

can change randomly within the range of ± 10%. Monte 
Carlo sampling was applied for the generation of scenarios for 
the SAA solution method, in which the increased workload 
rates and the changes in performance were both considered. 
In stochastic mathematical models, where scenarios are 
expressed with a continuous or discrete distribution, the 
SAA technique provides convenience in the approximate 
solution of the problem [38].

The mathematical model is defined based on cost 
minimisation in worker wages. Therefore, the objective 
function would aim to calculate the workforce requirement 
that gives the minimum cost through the constraints relevant 
to the target. The duration of an activity is given by Eq. (1) [17].

The bottom structure forms a flange of the hull girder. Therefore, the bottom structure is 
important, in terms of longitudinal strength. While contributing significantly to the strength, it 
distributes the local loading during docking. In addition, the bottom structure of a ship has to 
withstand bending stresses as well as water pressure. Single and double bottom structures are the 
two different forms of bottom structures. Moreover, longitudinal or transverse framing is applied to 
bottom structures [35]. A longitudinally framed double bottom block is examined in this study.  
 
DEFINITION OF THE PROBLEM 

 
Shipbuilding is a labour-intensive production process but it is hard to determine the exact 

workforce required in production processes. Revisions due to incorrect or incomplete designs, 
customer demands, and the reworking of defective manufacturing may occur. Besides this, the 
performance of employees is variable [37]. 

This study aims to calculate the workforce required in the C, D, E, F, G, H, and K production 
phases of a double bottom block belonging to a passenger ship. For this purpose, the average 
working performance of mounting, welding, and grinding workers was determined by conducting 
field observations. All the drawings of the block were examined and the amount of work required 
for mounting, welding, and grinding each interim product was calculated, and yet the work to be 
done, depending on revisions and errors, increases and becomes variable. Working conditions and 
the weather, as well as the mental and physical health of an employee, cause the average working 
performance of a worker to fluctuate. Various measures are taken to prevent possible delays in the 
production process due to the increased workload and varying worker performance. For example, 
the production process can be compensated for by shifting workers from another compartment to 
the disrupted one. However, the cost of newly added workers would be higher than that of those 
already employed because the required tools and equipment should be moved to the relevant 
compartment; adaptation to the new work area would be required. 

Considering the aforementioned situations, a mathematical model (called a ‘two-stage 
stochastic recourse model’) was created to calculate the man-day for mounting, welding, and 
grinding activities, to prevent unexpected cost increases and delays. It is difficult to obtain real 
solutions to two-stage mathematical models and, thus, the Sample Average Approximation (SAA) 
technique was used in the solution of the model. Two stochastic situations were defined when 
creating the scenarios to be used in the solution. The first is the increase in workload, due to revisions 
and the rectification of defective manufacturing, and the second is the average performance of the 
workers. The increase in workload was followed up by the planning department of the shipyard. 
Accordingly, a 1-2%, 5-10%, 10-15%, and 15-20% range of increase in the E-F, C-D, G-H, and K 
production phases was observed, respectively. The examinations made in the production area show 
that the average worker's performance can change randomly within the range of ± 10%. Monte Carlo 
sampling was applied for the generation of scenarios for the SAA solution method, in which the 
increased workload rates and the changes in performance were both considered. In stochastic 
mathematical models, where scenarios are expressed with a continuous or discrete distribution, the 
SAA technique provides convenience in the approximate solution of the problem [38]. 

The mathematical model is defined based on cost minimisation in worker wages. Therefore, 
the objective function would aim to calculate the workforce requirement that gives the minimum 
cost through the constraints relevant to the target. The duration of an activity is given by Eq. (1) 
[17]. 

           𝑑𝑑 = 𝐿𝐿
𝑃𝑃×𝑅𝑅                                          (1) 

where d is duration [day]; L is the amount of work [unit]; P is the average performance [unit/(man-
day)]; and R is the number of workers [man]. 

(1)

where d is duration [day]; L is the amount of work [unit]; 
P is the average performance [unit/(man-day)]; and R is the 
number of workers [man].

Here, multiplying the number of workers by the duration 
gives the workforce required or, in other words, the number 
of man-days needed to complete the work. In this case, Eq. (1) 
turns into the Eq. (2):

Here, multiplying the number of workers by the duration gives the workforce required or, in
other words, the number of man-days needed to complete the work. In this case, Eq. (1) turns into 
the Eq. (2):

𝑑𝑑 × 𝑅𝑅 = 𝐿𝐿
𝑃𝑃 (2)

Accordingly, the expression used becomes a parameter that includes the number of workers 
and time, becoming the decision variable used in the model.

METHODOLOGY

MATHEMATICAL MODEL

Stochastic programming encompasses the mathematical modelling to be used to make 
decisions under uncertainty [39]. The general form of the two-stage stochastic programming model 
with recourse is as follows [40].

min 𝑧𝑧 = 𝑐𝑐𝑇𝑇𝑥𝑥 + 𝐸𝐸𝜉𝜉[min𝑞𝑞(𝜔𝜔)𝑇𝑇𝑦𝑦(𝜔𝜔)]
      𝑠𝑠. 𝑡𝑡           𝐴𝐴𝑥𝑥 = 𝑏𝑏,
𝑇𝑇(𝜔𝜔)𝑥𝑥 + 𝑊𝑊𝑦𝑦(𝜔𝜔) = ℎ(𝜔𝜔),

𝑥𝑥 ≥ 0 ,  𝑦𝑦(𝜔𝜔) ≥ 0,
(3)

where 𝑥𝑥 is the first-stage decision vector; 𝑦𝑦 is the second-stage decision vector; ω is the stochastic 
event; A is the first-stage matrix; b represents the first-stage right-hand side values; T is the 
technology matrix; h represents the second-stage right-hand side values; and W is the recourse 
matrix. In this study, the decision vectors consist of the workforce (i.e. man-day), which are the 
product of the duration and the number of workers. Moreover, the objective function represents the 
total workforce cost. Accordingly, the following two-stage stochastic programming model with
recourse was developed to forecast the required man-day for mounting, welding, and grinding 
activities at each production phase of the double bottom block.

𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 = (𝒄𝒄𝟏𝟏𝑴𝑴 ∙  (𝒅𝒅𝑹𝑹𝟏𝟏
(𝒀𝒀,𝑴𝑴))  +  𝒄𝒄𝟏𝟏𝑾𝑾 ∙ (𝒅𝒅𝑹𝑹𝟏𝟏

(𝒀𝒀,𝑾𝑾)) + 𝒎𝒎 ∙ 𝒄𝒄𝟏𝟏𝑮𝑮 ∙ (𝒅𝒅𝑹𝑹𝟏𝟏
(𝒀𝒀,𝑮𝑮))

+ ∑𝓟𝓟𝒔𝒔

𝑺𝑺

𝒔𝒔=𝟏𝟏
(𝒄𝒄𝟐𝟐𝑴𝑴 ∙  (𝒅𝒅𝑹𝑹𝟐𝟐,𝒔𝒔

(𝒀𝒀,𝑴𝑴) )+ 𝒄𝒄𝟐𝟐𝑾𝑾 ∙ (𝒅𝒅𝑹𝑹𝟐𝟐,𝒔𝒔
(𝒀𝒀,𝑾𝑾) ) + 𝒎𝒎 ∙ 𝒄𝒄𝟐𝟐𝑮𝑮 ∙ (𝒅𝒅𝑹𝑹𝟐𝟐,𝒔𝒔

(𝒀𝒀,𝑮𝑮) ))) 

s.t.
𝒎𝒎 ∙ 𝑷𝑷𝒔𝒔(𝒀𝒀,𝒁𝒁) ∙ (𝒅𝒅𝑹𝑹𝟏𝟏

(𝒀𝒀,𝒁𝒁) + 𝒅𝒅𝑹𝑹𝟐𝟐,𝒔𝒔
(𝒀𝒀,𝒁𝒁)) ≥  𝒎𝒎 ∙ 𝑳𝑳𝒔𝒔(𝒀𝒀,𝒁𝒁);  ∀ 𝒔𝒔 = 𝟏𝟏, … . . ,𝑺𝑺;

∀ 𝒀𝒀 ∈ {𝑪𝑪,𝑫𝑫,𝑬𝑬,𝑭𝑭,𝑯𝑯,𝑮𝑮,𝑲𝑲}; ∀ 𝒁𝒁 ∈ {𝑴𝑴,𝑾𝑾,𝑮𝑮}

𝑰𝑰𝑰𝑰 𝒀𝒀 = {𝑬𝑬} ∧  𝒁𝒁 = {𝑮𝑮} 𝑻𝑻𝑻𝑻𝑻𝑻𝒎𝒎 𝒎𝒎 = 𝟎𝟎 𝑻𝑻𝒆𝒆𝒔𝒔𝑻𝑻 𝒎𝒎 = 𝟏𝟏 
𝒂𝒂𝒆𝒆𝒆𝒆 𝒅𝒅𝑻𝑻𝒄𝒄𝒎𝒎𝒔𝒔𝒎𝒎𝒅𝒅𝒎𝒎 𝒗𝒗𝒂𝒂𝒗𝒗𝒎𝒎𝒂𝒂𝒗𝒗𝒆𝒆𝑻𝑻𝒔𝒔 ≥ 𝟎𝟎 𝒂𝒂𝒎𝒎𝒅𝒅 𝒂𝒂𝒗𝒗𝑻𝑻 𝒎𝒎𝒎𝒎𝒊𝒊𝑻𝑻𝒊𝒊𝑻𝑻𝒗𝒗𝒔𝒔

where 𝑐𝑐1𝑀𝑀 is the daily cost of a mounting worker, 𝑐𝑐1𝑊𝑊 is the daily cost of a welder, c1G is the daily cost
of a grinding worker, 𝑐𝑐2𝑀𝑀 is the daily cost of an additional mounting worker, 𝑐𝑐2𝑊𝑊 is the daily cost of
an additional welder, and 𝑐𝑐2𝐺𝐺 is the daily cost of an additional grinder. These are the constant
parameters of the objective function. 𝒫𝒫𝑠𝑠 is the probability of scenario s. Within each independent 
sample, the probabilities of the scenarios are considered to be equal.

(2)

Accordingly, the expression used becomes a parameter 
that includes the number of workers and time, becoming the 
decision variable used in the model. 

METHODOLOGY

MATHEMATICAL MODEL

Stochastic programming encompasses the mathematical 
modelling to be used to make decisions under uncertainty [39]. 
The general form of the two-stage stochastic programming 
model with recourse is as follows [40].

Here, multiplying the number of workers by the duration gives the workforce required or, in
other words, the number of man-days needed to complete the work. In this case, Eq. (1) turns into 
the Eq. (2):

𝑑𝑑 × 𝑅𝑅 = 𝐿𝐿
𝑃𝑃 (2)

Accordingly, the expression used becomes a parameter that includes the number of workers 
and time, becoming the decision variable used in the model.

METHODOLOGY

MATHEMATICAL MODEL

Stochastic programming encompasses the mathematical modelling to be used to make 
decisions under uncertainty [39]. The general form of the two-stage stochastic programming model 
with recourse is as follows [40].

min 𝑧𝑧 = 𝑐𝑐𝑇𝑇𝑥𝑥 + 𝐸𝐸𝜉𝜉[min𝑞𝑞(𝜔𝜔)𝑇𝑇𝑦𝑦(𝜔𝜔)]
      𝑠𝑠. 𝑡𝑡           𝐴𝐴𝑥𝑥 = 𝑏𝑏,
𝑇𝑇(𝜔𝜔)𝑥𝑥 + 𝑊𝑊𝑦𝑦(𝜔𝜔) = ℎ(𝜔𝜔),

𝑥𝑥 ≥ 0 ,  𝑦𝑦(𝜔𝜔) ≥ 0,
(3)

where 𝑥𝑥 is the first-stage decision vector; 𝑦𝑦 is the second-stage decision vector; ω is the stochastic 
event; A is the first-stage matrix; b represents the first-stage right-hand side values; T is the 
technology matrix; h represents the second-stage right-hand side values; and W is the recourse 
matrix. In this study, the decision vectors consist of the workforce (i.e. man-day), which are the 
product of the duration and the number of workers. Moreover, the objective function represents the 
total workforce cost. Accordingly, the following two-stage stochastic programming model with
recourse was developed to forecast the required man-day for mounting, welding, and grinding 
activities at each production phase of the double bottom block.

𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 = (𝒄𝒄𝟏𝟏𝑴𝑴 ∙  (𝒅𝒅𝑹𝑹𝟏𝟏
(𝒀𝒀,𝑴𝑴))  +  𝒄𝒄𝟏𝟏𝑾𝑾 ∙ (𝒅𝒅𝑹𝑹𝟏𝟏

(𝒀𝒀,𝑾𝑾)) + 𝒎𝒎 ∙ 𝒄𝒄𝟏𝟏𝑮𝑮 ∙ (𝒅𝒅𝑹𝑹𝟏𝟏
(𝒀𝒀,𝑮𝑮))

+ ∑𝓟𝓟𝒔𝒔

𝑺𝑺

𝒔𝒔=𝟏𝟏
(𝒄𝒄𝟐𝟐𝑴𝑴 ∙  (𝒅𝒅𝑹𝑹𝟐𝟐,𝒔𝒔

(𝒀𝒀,𝑴𝑴) )+ 𝒄𝒄𝟐𝟐𝑾𝑾 ∙ (𝒅𝒅𝑹𝑹𝟐𝟐,𝒔𝒔
(𝒀𝒀,𝑾𝑾) ) + 𝒎𝒎 ∙ 𝒄𝒄𝟐𝟐𝑮𝑮 ∙ (𝒅𝒅𝑹𝑹𝟐𝟐,𝒔𝒔

(𝒀𝒀,𝑮𝑮) ))) 

s.t.
𝒎𝒎 ∙ 𝑷𝑷𝒔𝒔(𝒀𝒀,𝒁𝒁) ∙ (𝒅𝒅𝑹𝑹𝟏𝟏

(𝒀𝒀,𝒁𝒁) + 𝒅𝒅𝑹𝑹𝟐𝟐,𝒔𝒔
(𝒀𝒀,𝒁𝒁)) ≥  𝒎𝒎 ∙ 𝑳𝑳𝒔𝒔(𝒀𝒀,𝒁𝒁);  ∀ 𝒔𝒔 = 𝟏𝟏, … . . ,𝑺𝑺;

∀ 𝒀𝒀 ∈ {𝑪𝑪,𝑫𝑫,𝑬𝑬,𝑭𝑭,𝑯𝑯,𝑮𝑮,𝑲𝑲}; ∀ 𝒁𝒁 ∈ {𝑴𝑴,𝑾𝑾,𝑮𝑮}

𝑰𝑰𝑰𝑰 𝒀𝒀 = {𝑬𝑬} ∧  𝒁𝒁 = {𝑮𝑮} 𝑻𝑻𝑻𝑻𝑻𝑻𝒎𝒎 𝒎𝒎 = 𝟎𝟎 𝑻𝑻𝒆𝒆𝒔𝒔𝑻𝑻 𝒎𝒎 = 𝟏𝟏 
𝒂𝒂𝒆𝒆𝒆𝒆 𝒅𝒅𝑻𝑻𝒄𝒄𝒎𝒎𝒔𝒔𝒎𝒎𝒅𝒅𝒎𝒎 𝒗𝒗𝒂𝒂𝒗𝒗𝒎𝒎𝒂𝒂𝒗𝒗𝒆𝒆𝑻𝑻𝒔𝒔 ≥ 𝟎𝟎 𝒂𝒂𝒎𝒎𝒅𝒅 𝒂𝒂𝒗𝒗𝑻𝑻 𝒎𝒎𝒎𝒎𝒊𝒊𝑻𝑻𝒊𝒊𝑻𝑻𝒗𝒗𝒔𝒔

where 𝑐𝑐1𝑀𝑀 is the daily cost of a mounting worker, 𝑐𝑐1𝑊𝑊 is the daily cost of a welder, c1G is the daily cost
of a grinding worker, 𝑐𝑐2𝑀𝑀 is the daily cost of an additional mounting worker, 𝑐𝑐2𝑊𝑊 is the daily cost of
an additional welder, and 𝑐𝑐2𝐺𝐺 is the daily cost of an additional grinder. These are the constant
parameters of the objective function. 𝒫𝒫𝑠𝑠 is the probability of scenario s. Within each independent 
sample, the probabilities of the scenarios are considered to be equal.

(3)

where x is the first-stage decision vector; y is the second-stage 
decision vector; ω is the stochastic event; A is the first-stage 
matrix; b represents the first-stage right-hand side values; 
T is the technology matrix; h represents the second-stage 
right-hand side values; and W is the recourse matrix. In this 
study, the decision vectors consist of the workforce (i.e. man-
day), which are the product of the duration and the number 
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of workers. Moreover, the objective function represents the 
total workforce cost. Accordingly, the following two-stage 
stochastic programming model with recourse was developed 
to forecast the required man-day for mounting, welding, and 
grinding activities at each production phase of the double 
bottom block. 

Here, multiplying the number of workers by the duration gives the workforce required or, in
other words, the number of man-days needed to complete the work. In this case, Eq. (1) turns into 
the Eq. (2):

𝑑𝑑 × 𝑅𝑅 = 𝐿𝐿
𝑃𝑃 (2)

Accordingly, the expression used becomes a parameter that includes the number of workers 
and time, becoming the decision variable used in the model.

METHODOLOGY

MATHEMATICAL MODEL

Stochastic programming encompasses the mathematical modelling to be used to make 
decisions under uncertainty [39]. The general form of the two-stage stochastic programming model 
with recourse is as follows [40].

min 𝑧𝑧 = 𝑐𝑐𝑇𝑇𝑥𝑥 + 𝐸𝐸𝜉𝜉[min𝑞𝑞(𝜔𝜔)𝑇𝑇𝑦𝑦(𝜔𝜔)]
      𝑠𝑠. 𝑡𝑡           𝐴𝐴𝑥𝑥 = 𝑏𝑏,
𝑇𝑇(𝜔𝜔)𝑥𝑥 + 𝑊𝑊𝑦𝑦(𝜔𝜔) = ℎ(𝜔𝜔),

𝑥𝑥 ≥ 0 ,  𝑦𝑦(𝜔𝜔) ≥ 0,
(3)

where 𝑥𝑥 is the first-stage decision vector; 𝑦𝑦 is the second-stage decision vector; ω is the stochastic 
event; A is the first-stage matrix; b represents the first-stage right-hand side values; T is the 
technology matrix; h represents the second-stage right-hand side values; and W is the recourse 
matrix. In this study, the decision vectors consist of the workforce (i.e. man-day), which are the 
product of the duration and the number of workers. Moreover, the objective function represents the 
total workforce cost. Accordingly, the following two-stage stochastic programming model with
recourse was developed to forecast the required man-day for mounting, welding, and grinding 
activities at each production phase of the double bottom block.

𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 = (𝒄𝒄𝟏𝟏𝑴𝑴 ∙  (𝒅𝒅𝑹𝑹𝟏𝟏
(𝒀𝒀,𝑴𝑴))  +  𝒄𝒄𝟏𝟏𝑾𝑾 ∙ (𝒅𝒅𝑹𝑹𝟏𝟏

(𝒀𝒀,𝑾𝑾)) + 𝒎𝒎 ∙ 𝒄𝒄𝟏𝟏𝑮𝑮 ∙ (𝒅𝒅𝑹𝑹𝟏𝟏
(𝒀𝒀,𝑮𝑮))

+ ∑𝓟𝓟𝒔𝒔

𝑺𝑺

𝒔𝒔=𝟏𝟏
(𝒄𝒄𝟐𝟐𝑴𝑴 ∙  (𝒅𝒅𝑹𝑹𝟐𝟐,𝒔𝒔

(𝒀𝒀,𝑴𝑴) )+ 𝒄𝒄𝟐𝟐𝑾𝑾 ∙ (𝒅𝒅𝑹𝑹𝟐𝟐,𝒔𝒔
(𝒀𝒀,𝑾𝑾) ) + 𝒎𝒎 ∙ 𝒄𝒄𝟐𝟐𝑮𝑮 ∙ (𝒅𝒅𝑹𝑹𝟐𝟐,𝒔𝒔

(𝒀𝒀,𝑮𝑮) ))) 

s.t.
𝒎𝒎 ∙ 𝑷𝑷𝒔𝒔(𝒀𝒀,𝒁𝒁) ∙ (𝒅𝒅𝑹𝑹𝟏𝟏

(𝒀𝒀,𝒁𝒁) + 𝒅𝒅𝑹𝑹𝟐𝟐,𝒔𝒔
(𝒀𝒀,𝒁𝒁)) ≥  𝒎𝒎 ∙ 𝑳𝑳𝒔𝒔(𝒀𝒀,𝒁𝒁);  ∀ 𝒔𝒔 = 𝟏𝟏, … . . ,𝑺𝑺;

∀ 𝒀𝒀 ∈ {𝑪𝑪,𝑫𝑫,𝑬𝑬,𝑭𝑭,𝑯𝑯,𝑮𝑮,𝑲𝑲}; ∀ 𝒁𝒁 ∈ {𝑴𝑴,𝑾𝑾,𝑮𝑮}

𝑰𝑰𝑰𝑰 𝒀𝒀 = {𝑬𝑬} ∧  𝒁𝒁 = {𝑮𝑮} 𝑻𝑻𝑻𝑻𝑻𝑻𝒎𝒎 𝒎𝒎 = 𝟎𝟎 𝑻𝑻𝒆𝒆𝒔𝒔𝑻𝑻 𝒎𝒎 = 𝟏𝟏 
𝒂𝒂𝒆𝒆𝒆𝒆 𝒅𝒅𝑻𝑻𝒄𝒄𝒎𝒎𝒔𝒔𝒎𝒎𝒅𝒅𝒎𝒎 𝒗𝒗𝒂𝒂𝒗𝒗𝒎𝒎𝒂𝒂𝒗𝒗𝒆𝒆𝑻𝑻𝒔𝒔 ≥ 𝟎𝟎 𝒂𝒂𝒎𝒎𝒅𝒅 𝒂𝒂𝒗𝒗𝑻𝑻 𝒎𝒎𝒎𝒎𝒊𝒊𝑻𝑻𝒊𝒊𝑻𝑻𝒗𝒗𝒔𝒔

where 𝑐𝑐1𝑀𝑀 is the daily cost of a mounting worker, 𝑐𝑐1𝑊𝑊 is the daily cost of a welder, c1G is the daily cost
of a grinding worker, 𝑐𝑐2𝑀𝑀 is the daily cost of an additional mounting worker, 𝑐𝑐2𝑊𝑊 is the daily cost of
an additional welder, and 𝑐𝑐2𝐺𝐺 is the daily cost of an additional grinder. These are the constant
parameters of the objective function. 𝒫𝒫𝑠𝑠 is the probability of scenario s. Within each independent 
sample, the probabilities of the scenarios are considered to be equal.

(4)

where  is the daily cost of a mounting worker,  is the 
daily cost of a welder,  is the daily cost of a grinding worker, 

  is the daily cost of an additional mounting worker,  is 
the daily cost of an additional welder, and  is the daily cost 
of an additional grinder. These are the constant parameters 
of the objective function.  is the probability of scenario s. 
Within each independent sample, the probabilities of the 
scenarios are considered to be equal.

The other letters used in the model can be defined as follows: 
d represents duration; P, R, and L are the worker performance, 
number of workers, and amount of work, respectively; 
Y (written as a superscript) indicates the production phases 
(i.e. C, D, E, F, H, G, and K); and Z (written as a superscript) 
shows the activities (i.e. Mounting (M), Welding (W), and 
Grinding (G)). For example, dR1

( C,M) stands for the amount of 
mounting workforce allocated to the production phase C at 
the first stage. Also,  stands for the amount of additional 
mounting workforce for production phase C if scenario s 
occurs. Furthermore,  is the welder performance at the 
production phase D in scenario s and  is the grinding 
work to be completed at the production phase D in scenario s. 
It was accepted that the daily costs of the mounting worker, 
welder, and grinder are constant.

In Eq. (4), ‘minz’ is the objective function representing 
the total labour cost. This objective function consists of two 
parts: the first stage and the second stage. The first stage is 
deterministic, while the second stage is stochastic.

In the first stage of the objective function, the daily cost of 
a mounting worker was multiplied by the total workforce for 
the mounting, the daily cost of a welder was multiplied by the 
total workforce for the welding, and the daily cost of a grinder 
was multiplied by the total workforce for the grinding.

In the second stage of the objective function, recourse 
costs were calculated. It is assumed that the costs of the 
additional workers are constant. At this stage, the daily cost 
of the additional mounting worker was multiplied by the 
mounting workforce shortage, the daily cost of the additional 
welder was multiplied by the welding workforce shortage, 
and the daily cost of the additional grinder was multiplied 
by the grinding workforce shortage.

Similar to the objective function, the decision variables 
were also divided into two parts, reflecting the decisions 
made before and after the realisation of an uncertain event, 
such as work amounts and worker performance fluctuations. 

 represents the first stage decision variable, which shows 
the amount of the workforce. In the same manner,  is 
the second stage decision variable, showing the amount of 
workforce after the realisation of an uncertain event for the 
relevant scenario.

Constraint equations provide the completion of scenario-
based work amounts. To do so, the calculated workforce 
amount was multiplied by the scenario-based performance. 
Since there is no grinding activity in ‘production phase E’, 
grinding is not included in this phase.

STEPS OF THE SAMPLE AVERAGE APPROXIMATION 
(SAA) TECHNIqUE

The SAA technique is used to solve the two-stage stochastic 
recourse model. This method allows us to deal with the 
problem in a smaller size and facilitate the solution. A sample 
of N scenarios (ξ1, ξ2, … … , ξN) is generated for the random 
vector ξ. Then, the expected value function 

The other letters used in the model can be defined as follows: d represents duration; P, R, and 
L are the worker performance, number of workers, and amount of work, respectively; Y (written as 
a superscript) indicates the production phases (i.e. C, D, E, F, H, G, and K); and Z (written as a 
superscript) shows the activities (i.e. Mounting (M), Welding (W), and Grinding (G)). For example, 
𝑑𝑑𝑅𝑅1

(𝐶𝐶,𝑀𝑀)stands for the amount of mounting workforce allocated to the production phase C at the first 
stage. Also, 𝑑𝑑𝑅𝑅2,𝑠𝑠

(𝐶𝐶,𝑀𝑀) stands for the amount of additional mounting workforce for production phase 
C if scenario s occurs. Furthermore, 𝑃𝑃𝑠𝑠

(𝐷𝐷,𝑊𝑊) is the welder performance at the production phase D in 
scenario s and 𝐿𝐿𝑠𝑠

(𝐷𝐷,𝐺𝐺) is the grinding work to be completed at the production phase D in scenario s. 
It was accepted that the daily costs of the mounting worker, welder, and grinder are constant. 

In Eq. (4), ‘minz’ is the objective function representing the total labour cost. This objective 
function consists of two parts: the first stage and the second stage. The first stage is deterministic, 
while the second stage is stochastic. 

In the first stage of the objective function, the daily cost of a mounting worker was multiplied 
by the total workforce for the mounting, the daily cost of a welder was multiplied by the total 
workforce for the welding, and the daily cost of a grinder was multiplied by the total workforce for 
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In the second stage of the objective function, recourse costs were calculated. It is assumed that 
the costs of the additional workers are constant. At this stage, the daily cost of the additional 
mounting worker was multiplied by the mounting workforce shortage, the daily cost of the additional 
welder was multiplied by the welding workforce shortage, and the daily cost of the additional grinder 
was multiplied by the grinding workforce shortage. 

Similar to the objective function, the decision variables were also divided into two parts, 
reflecting the decisions made before and after the realisation of an uncertain event, such as work 
amounts and worker performance fluctuations. 𝑑𝑑𝑅𝑅1

(𝑌𝑌,𝑍𝑍) represents the first stage decision variable, 
which shows the amount of the workforce. In the same manner, 𝑑𝑑𝑅𝑅2,𝑠𝑠

(𝑌𝑌,𝑍𝑍) is the second stage decision 
variable, showing the amount of workforce after the realisation of an uncertain event for the relevant 
scenario. 

Constraint equations provide the completion of scenario-based work amounts. To do so, the 
calculated workforce amount was multiplied by the scenario-based performance. Since there is no 
grinding activity in ‘production phase E’, grinding is not included in this phase. 
 
STEPS OF THE SAMPLE AVERAGE APPROXIMATION (SAA) TECHNIQUE 
 

The SAA technique is used to solve the two-stage stochastic recourse model. This method 
allows us to deal with the problem in a smaller size and facilitate the solution. A sample of 𝑵𝑵 
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size). A sufficiently large reference sample is chosen: (𝑁𝑁′ >> 𝑁𝑁). Here, the scenarios consist of 
combinations of the amount of work, revision status, and worker performance. The scenario table 
contains the final values for the amount of work and performance. 

Step 1: This practice has eight different parameter sets. Therefore, the solution is performed 
for sixty different independent samples m. For each independent sample m, the following model is 
solved by any deterministic optimisation algorithm. In Eq. (5), 𝑣𝑣𝑁𝑁𝑚𝑚 stands for 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, as seen in Eq. 
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size). A sufficiently large reference sample is chosen: (𝑁𝑁′ >> 𝑁𝑁). Here, the scenarios consist of 
combinations of the amount of work, revision status, and worker performance. The scenario table 
contains the final values for the amount of work and performance. 

Step 1: This practice has eight different parameter sets. Therefore, the solution is performed 
for sixty different independent samples m. For each independent sample m, the following model is 
solved by any deterministic optimisation algorithm. In Eq. (5), 𝑣𝑣𝑁𝑁𝑚𝑚 stands for 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, as seen in Eq. 
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The SAA problem’s optimum value is shown by 

The other letters used in the model can be defined as follows: d represents duration; P, R, and 
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a superscript) indicates the production phases (i.e. C, D, E, F, H, G, and K); and Z (written as a 
superscript) shows the activities (i.e. Mounting (M), Welding (W), and Grinding (G)). For example, 
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stage. Also, 𝑑𝑑𝑅𝑅2,𝑠𝑠

(𝐶𝐶,𝑀𝑀) stands for the amount of additional mounting workforce for production phase 
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(𝐷𝐷,𝑊𝑊) is the welder performance at the production phase D in 
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It was accepted that the daily costs of the mounting worker, welder, and grinder are constant. 

In Eq. (4), ‘minz’ is the objective function representing the total labour cost. This objective 
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mounting worker was multiplied by the mounting workforce shortage, the daily cost of the additional 
welder was multiplied by the welding workforce shortage, and the daily cost of the additional grinder 
was multiplied by the grinding workforce shortage. 

Similar to the objective function, the decision variables were also divided into two parts, 
reflecting the decisions made before and after the realisation of an uncertain event, such as work 
amounts and worker performance fluctuations. 𝑑𝑑𝑅𝑅1

(𝑌𝑌,𝑍𝑍) represents the first stage decision variable, 
which shows the amount of the workforce. In the same manner, 𝑑𝑑𝑅𝑅2,𝑠𝑠

(𝑌𝑌,𝑍𝑍) is the second stage decision 
variable, showing the amount of workforce after the realisation of an uncertain event for the relevant 
scenario. 

Constraint equations provide the completion of scenario-based work amounts. To do so, the 
calculated workforce amount was multiplied by the scenario-based performance. Since there is no 
grinding activity in ‘production phase E’, grinding is not included in this phase. 
 
STEPS OF THE SAMPLE AVERAGE APPROXIMATION (SAA) TECHNIQUE 
 

The SAA technique is used to solve the two-stage stochastic recourse model. This method 
allows us to deal with the problem in a smaller size and facilitate the solution. A sample of 𝑵𝑵 
scenarios (𝝃𝝃𝟏𝟏, 𝝃𝝃𝟐𝟐, … … , 𝝃𝝃𝑵𝑵) is generated for the random vector 𝝃𝝃. Then, the expected value function  
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𝒏𝒏=𝟏𝟏 . The steps of the SAA 
technique can be summarised as follows [41].  

There are 𝑀𝑀(𝑚𝑚 = 1,2, . . . . . . ,𝑀𝑀) independent random samples with 𝑁𝑁𝑚𝑚 scenarios (𝑁𝑁: sample 
size). A sufficiently large reference sample is chosen: (𝑁𝑁′ >> 𝑁𝑁). Here, the scenarios consist of 
combinations of the amount of work, revision status, and worker performance. The scenario table 
contains the final values for the amount of work and performance. 

Step 1: This practice has eight different parameter sets. Therefore, the solution is performed 
for sixty different independent samples m. For each independent sample m, the following model is 
solved by any deterministic optimisation algorithm. In Eq. (5), 𝑣𝑣𝑁𝑁𝑚𝑚 stands for 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, as seen in Eq. 
(4), and so it refers to the total workforce cost. 

𝑣𝑣𝑁𝑁𝑚𝑚 = 𝑀𝑀𝑚𝑚𝑚𝑚
𝑥𝑥𝑥𝑥𝑥𝑥

{𝑐𝑐𝑇𝑇𝑥𝑥 + 1
𝑁𝑁𝑚𝑚

∑  𝑄𝑄(𝑥𝑥, 𝜉𝜉𝑚𝑚𝑛𝑛 )𝑁𝑁𝑚𝑚
𝑛𝑛=1 }               (5) . Thus, 

it is possible to determine the optimum solution for each The SAA problem’s optimum value is shown by 𝑣𝑣𝑁𝑁𝑚𝑚. Thus, it is possible to determine the 
optimum solution for each m (�̂�𝑥𝑁𝑁𝑚𝑚, … , �̂�𝑥𝑁𝑁𝑀𝑀) and objective function value (𝑣𝑣𝑁𝑁𝑚𝑚, … , 𝑣𝑣𝑁𝑁𝑀𝑀).  

Step 2: The average of the optimal objective function values determined in the first stage (�̅�𝑣𝑁𝑁𝑀𝑀) 
is calculated. This computation is also applied to eight different parameter sets. 

�̅�𝑣𝑁𝑁𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑣𝑣𝑁𝑁𝑚𝑚

𝑀𝑀
𝑚𝑚=1                                                    (6)      

�̅�𝑣𝑁𝑁𝑀𝑀 is an unbiased estimator for 𝔼𝔼[𝑣𝑣𝑁𝑁] and a statistical lower limit for the optimum value of 
the true problem 𝑣𝑣∗. A variance estimator for �̅�𝑣𝑁𝑁𝑀𝑀 is determined by Eq. (7). With this calculation, the 
average deviation of the objective function values from the average objective function is obtained. 

𝑆𝑆�̅�𝑣𝑁𝑁𝑀𝑀
2 : = 1

𝑀𝑀(𝑀𝑀−1)  ∑ (𝑣𝑣𝑁𝑁𝑚𝑚 − �̅�𝑣𝑁𝑁𝑀𝑀)2𝑀𝑀
𝑚𝑚=1                                              (7) 

Step 3: For each independent random sample with a reference sample size N', the true 
objective function value estimate is determined by resolving the following formulation, using the 
best solutions from step 1. 

�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚): = 𝑐𝑐𝑇𝑇�̂�𝑥𝑁𝑁𝑚𝑚 + 1
𝑁𝑁′∑ 𝑄𝑄(�̂�𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛)𝑁𝑁′

𝑛𝑛=1 ,    𝑚𝑚 = 1,2, … ,𝑀𝑀             (8) 
The statistical upper bound for the optimum value of the true problem 𝑣𝑣∗ is determined by Eq. 

(8) and the variance estimator of this value is calculated as follows: 
𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2 : = 1

𝑁𝑁′(𝑁𝑁′−1)  ∑ [𝑐𝑐𝑇𝑇�̂�𝑥𝑁𝑁𝑚𝑚 + 𝑄𝑄(�̂�𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛) − �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)]2𝑁𝑁′
𝑛𝑛=1 ,  𝑚𝑚 = 1,2, . .𝑀𝑀      (9) 

The average of the upper bound values, determined according to Eq. (8), can be calculated and 
the arithmetic average of the true objective function values (calculated for independent values of m 
for each parameter set) can be observed. 

�̅�𝑔𝑁𝑁′𝑀𝑀 ≔ 1
𝑀𝑀∑ �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1 ,  𝑚𝑚 = 1,2, … ,𝑀𝑀                      (10) 
Also, the average of the variances calculated by Eq. (9) can be determined. With Eq. (11), the 

average deviation of the true objective function values is obtained from the average true objective 
function. 

𝑆𝑆�̂̅�𝑔𝑁𝑁′𝑀𝑀
2 ≔ 1

𝑀𝑀∑ 𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2𝑀𝑀

𝑚𝑚=1                    (11) 
Step 4: Eq. (12) is used to determine the optimal gap of the �̂�𝑥𝑁𝑁𝑚𝑚 solution. When this value 

approaches zero, it indicates convergence to the optimum solution.   
𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚) = �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚) − �̅�𝑣𝑁𝑁𝑀𝑀                              (12) 

The estimated variance of the optimal gap of the related solution obtained by Eq. (11) is 
calculated as follows: 

𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (�̂�𝑥𝑁𝑁𝑚𝑚) = 𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2 + 𝑆𝑆�̅�𝑣𝑁𝑁𝑀𝑀

2                                                (13) 
Also, the average of the optimal gap values is calculated by Eq. (14). This value shows the 

average of the optimal gap values obtained from each parameter set. 
𝑔𝑔𝑔𝑔𝑝𝑝̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ≔

1
𝑀𝑀∑ 𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1                          (14) 
The average of the optimal gap and its variance are used in the calculation of confidence 

interval values. Accordingly, the average of the variances of the optimal gaps is found from:   
𝑆𝑆�̅�𝑔𝑔𝑔𝑔𝑔2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀
𝑚𝑚=1                                                   (15) 

The confidence interval for the average of the optimal gap is calculated [42]. By using this 
equation, it can be seen whether the average gap values are within the confidence interval 
boundaries.  

𝑔𝑔𝑔𝑔𝑝𝑝̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ∓ 𝑡𝑡(𝛼𝛼 2),(𝑀𝑀−1)⁄ (�̅�𝑆𝑔𝑔𝑔𝑔𝑔𝑔
2

√𝑀𝑀 )                (16) 
 
 

 and objective function value (

The other letters used in the model can be defined as follows: d represents duration; P, R, and 
L are the worker performance, number of workers, and amount of work, respectively; Y (written as 
a superscript) indicates the production phases (i.e. C, D, E, F, H, G, and K); and Z (written as a 
superscript) shows the activities (i.e. Mounting (M), Welding (W), and Grinding (G)). For example, 
𝑑𝑑𝑅𝑅1

(𝐶𝐶,𝑀𝑀)stands for the amount of mounting workforce allocated to the production phase C at the first 
stage. Also, 𝑑𝑑𝑅𝑅2,𝑠𝑠

(𝐶𝐶,𝑀𝑀) stands for the amount of additional mounting workforce for production phase 
C if scenario s occurs. Furthermore, 𝑃𝑃𝑠𝑠

(𝐷𝐷,𝑊𝑊) is the welder performance at the production phase D in 
scenario s and 𝐿𝐿𝑠𝑠

(𝐷𝐷,𝐺𝐺) is the grinding work to be completed at the production phase D in scenario s. 
It was accepted that the daily costs of the mounting worker, welder, and grinder are constant. 

In Eq. (4), ‘minz’ is the objective function representing the total labour cost. This objective 
function consists of two parts: the first stage and the second stage. The first stage is deterministic, 
while the second stage is stochastic. 

In the first stage of the objective function, the daily cost of a mounting worker was multiplied 
by the total workforce for the mounting, the daily cost of a welder was multiplied by the total 
workforce for the welding, and the daily cost of a grinder was multiplied by the total workforce for 
the grinding. 

In the second stage of the objective function, recourse costs were calculated. It is assumed that 
the costs of the additional workers are constant. At this stage, the daily cost of the additional 
mounting worker was multiplied by the mounting workforce shortage, the daily cost of the additional 
welder was multiplied by the welding workforce shortage, and the daily cost of the additional grinder 
was multiplied by the grinding workforce shortage. 

Similar to the objective function, the decision variables were also divided into two parts, 
reflecting the decisions made before and after the realisation of an uncertain event, such as work 
amounts and worker performance fluctuations. 𝑑𝑑𝑅𝑅1

(𝑌𝑌,𝑍𝑍) represents the first stage decision variable, 
which shows the amount of the workforce. In the same manner, 𝑑𝑑𝑅𝑅2,𝑠𝑠

(𝑌𝑌,𝑍𝑍) is the second stage decision 
variable, showing the amount of workforce after the realisation of an uncertain event for the relevant 
scenario. 

Constraint equations provide the completion of scenario-based work amounts. To do so, the 
calculated workforce amount was multiplied by the scenario-based performance. Since there is no 
grinding activity in ‘production phase E’, grinding is not included in this phase. 
 
STEPS OF THE SAMPLE AVERAGE APPROXIMATION (SAA) TECHNIQUE 
 

The SAA technique is used to solve the two-stage stochastic recourse model. This method 
allows us to deal with the problem in a smaller size and facilitate the solution. A sample of 𝑵𝑵 
scenarios (𝝃𝝃𝟏𝟏, 𝝃𝝃𝟐𝟐, … … , 𝝃𝝃𝑵𝑵) is generated for the random vector 𝝃𝝃. Then, the expected value function  
𝔼𝔼[𝑸𝑸(𝒙𝒙, 𝝃𝝃)] is calculated with the sample function 𝑵𝑵−𝟏𝟏∑ 𝑸𝑸(𝒙𝒙, 𝝃𝝃𝒏𝒏)𝑵𝑵

𝒏𝒏=𝟏𝟏 . The steps of the SAA 
technique can be summarised as follows [41].  

There are 𝑀𝑀(𝑚𝑚 = 1,2, . . . . . . ,𝑀𝑀) independent random samples with 𝑁𝑁𝑚𝑚 scenarios (𝑁𝑁: sample 
size). A sufficiently large reference sample is chosen: (𝑁𝑁′ >> 𝑁𝑁). Here, the scenarios consist of 
combinations of the amount of work, revision status, and worker performance. The scenario table 
contains the final values for the amount of work and performance. 

Step 1: This practice has eight different parameter sets. Therefore, the solution is performed 
for sixty different independent samples m. For each independent sample m, the following model is 
solved by any deterministic optimisation algorithm. In Eq. (5), 𝑣𝑣𝑁𝑁𝑚𝑚 stands for 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, as seen in Eq. 
(4), and so it refers to the total workforce cost. 

𝑣𝑣𝑁𝑁𝑚𝑚 = 𝑀𝑀𝑚𝑚𝑚𝑚
𝑥𝑥𝑥𝑥𝑥𝑥

{𝑐𝑐𝑇𝑇𝑥𝑥 + 1
𝑁𝑁𝑚𝑚

∑  𝑄𝑄(𝑥𝑥, 𝜉𝜉𝑚𝑚𝑛𝑛 )𝑁𝑁𝑚𝑚
𝑛𝑛=1 }               (5) ,…,

The other letters used in the model can be defined as follows: d represents duration; P, R, and 
L are the worker performance, number of workers, and amount of work, respectively; Y (written as 
a superscript) indicates the production phases (i.e. C, D, E, F, H, G, and K); and Z (written as a 
superscript) shows the activities (i.e. Mounting (M), Welding (W), and Grinding (G)). For example, 
𝑑𝑑𝑅𝑅1

(𝐶𝐶,𝑀𝑀)stands for the amount of mounting workforce allocated to the production phase C at the first 
stage. Also, 𝑑𝑑𝑅𝑅2,𝑠𝑠

(𝐶𝐶,𝑀𝑀) stands for the amount of additional mounting workforce for production phase 
C if scenario s occurs. Furthermore, 𝑃𝑃𝑠𝑠

(𝐷𝐷,𝑊𝑊) is the welder performance at the production phase D in 
scenario s and 𝐿𝐿𝑠𝑠

(𝐷𝐷,𝐺𝐺) is the grinding work to be completed at the production phase D in scenario s. 
It was accepted that the daily costs of the mounting worker, welder, and grinder are constant. 

In Eq. (4), ‘minz’ is the objective function representing the total labour cost. This objective 
function consists of two parts: the first stage and the second stage. The first stage is deterministic, 
while the second stage is stochastic. 

In the first stage of the objective function, the daily cost of a mounting worker was multiplied 
by the total workforce for the mounting, the daily cost of a welder was multiplied by the total 
workforce for the welding, and the daily cost of a grinder was multiplied by the total workforce for 
the grinding. 

In the second stage of the objective function, recourse costs were calculated. It is assumed that 
the costs of the additional workers are constant. At this stage, the daily cost of the additional 
mounting worker was multiplied by the mounting workforce shortage, the daily cost of the additional 
welder was multiplied by the welding workforce shortage, and the daily cost of the additional grinder 
was multiplied by the grinding workforce shortage. 

Similar to the objective function, the decision variables were also divided into two parts, 
reflecting the decisions made before and after the realisation of an uncertain event, such as work 
amounts and worker performance fluctuations. 𝑑𝑑𝑅𝑅1

(𝑌𝑌,𝑍𝑍) represents the first stage decision variable, 
which shows the amount of the workforce. In the same manner, 𝑑𝑑𝑅𝑅2,𝑠𝑠

(𝑌𝑌,𝑍𝑍) is the second stage decision 
variable, showing the amount of workforce after the realisation of an uncertain event for the relevant 
scenario. 

Constraint equations provide the completion of scenario-based work amounts. To do so, the 
calculated workforce amount was multiplied by the scenario-based performance. Since there is no 
grinding activity in ‘production phase E’, grinding is not included in this phase. 
 
STEPS OF THE SAMPLE AVERAGE APPROXIMATION (SAA) TECHNIQUE 
 

The SAA technique is used to solve the two-stage stochastic recourse model. This method 
allows us to deal with the problem in a smaller size and facilitate the solution. A sample of 𝑵𝑵 
scenarios (𝝃𝝃𝟏𝟏, 𝝃𝝃𝟐𝟐, … … , 𝝃𝝃𝑵𝑵) is generated for the random vector 𝝃𝝃. Then, the expected value function  
𝔼𝔼[𝑸𝑸(𝒙𝒙, 𝝃𝝃)] is calculated with the sample function 𝑵𝑵−𝟏𝟏∑ 𝑸𝑸(𝒙𝒙, 𝝃𝝃𝒏𝒏)𝑵𝑵

𝒏𝒏=𝟏𝟏 . The steps of the SAA 
technique can be summarised as follows [41].  

There are 𝑀𝑀(𝑚𝑚 = 1,2, . . . . . . ,𝑀𝑀) independent random samples with 𝑁𝑁𝑚𝑚 scenarios (𝑁𝑁: sample 
size). A sufficiently large reference sample is chosen: (𝑁𝑁′ >> 𝑁𝑁). Here, the scenarios consist of 
combinations of the amount of work, revision status, and worker performance. The scenario table 
contains the final values for the amount of work and performance. 

Step 1: This practice has eight different parameter sets. Therefore, the solution is performed 
for sixty different independent samples m. For each independent sample m, the following model is 
solved by any deterministic optimisation algorithm. In Eq. (5), 𝑣𝑣𝑁𝑁𝑚𝑚 stands for 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, as seen in Eq. 
(4), and so it refers to the total workforce cost. 

𝑣𝑣𝑁𝑁𝑚𝑚 = 𝑀𝑀𝑚𝑚𝑚𝑚
𝑥𝑥𝑥𝑥𝑥𝑥

{𝑐𝑐𝑇𝑇𝑥𝑥 + 1
𝑁𝑁𝑚𝑚

∑  𝑄𝑄(𝑥𝑥, 𝜉𝜉𝑚𝑚𝑛𝑛 )𝑁𝑁𝑚𝑚
𝑛𝑛=1 }               (5) ).

Step 2: The average of the optimal objective function values 
determined in the first stage () is calculated. This computation 
is also applied to eight different parameter sets.

The SAA problem’s optimum value is shown by 𝑣𝑣𝑁𝑁𝑚𝑚. Thus, it is possible to determine the 
optimum solution for each m (�̂�𝑥𝑁𝑁𝑚𝑚, … , �̂�𝑥𝑁𝑁𝑀𝑀) and objective function value (𝑣𝑣𝑁𝑁𝑚𝑚, … , 𝑣𝑣𝑁𝑁𝑀𝑀).  

Step 2: The average of the optimal objective function values determined in the first stage (�̅�𝑣𝑁𝑁𝑀𝑀) 
is calculated. This computation is also applied to eight different parameter sets. 

�̅�𝑣𝑁𝑁𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑣𝑣𝑁𝑁𝑚𝑚

𝑀𝑀
𝑚𝑚=1                                                    (6)      

�̅�𝑣𝑁𝑁𝑀𝑀 is an unbiased estimator for 𝔼𝔼[𝑣𝑣𝑁𝑁] and a statistical lower limit for the optimum value of 
the true problem 𝑣𝑣∗. A variance estimator for �̅�𝑣𝑁𝑁𝑀𝑀 is determined by Eq. (7). With this calculation, the 
average deviation of the objective function values from the average objective function is obtained. 

𝑆𝑆�̅�𝑣𝑁𝑁𝑀𝑀
2 : = 1

𝑀𝑀(𝑀𝑀−1)  ∑ (𝑣𝑣𝑁𝑁𝑚𝑚 − �̅�𝑣𝑁𝑁𝑀𝑀)2𝑀𝑀
𝑚𝑚=1                                              (7) 

Step 3: For each independent random sample with a reference sample size N', the true 
objective function value estimate is determined by resolving the following formulation, using the 
best solutions from step 1. 

�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚): = 𝑐𝑐𝑇𝑇�̂�𝑥𝑁𝑁𝑚𝑚 + 1
𝑁𝑁′∑ 𝑄𝑄(�̂�𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛)𝑁𝑁′

𝑛𝑛=1 ,    𝑚𝑚 = 1,2, … ,𝑀𝑀             (8) 
The statistical upper bound for the optimum value of the true problem 𝑣𝑣∗ is determined by Eq. 

(8) and the variance estimator of this value is calculated as follows: 
𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2 : = 1

𝑁𝑁′(𝑁𝑁′−1)  ∑ [𝑐𝑐𝑇𝑇�̂�𝑥𝑁𝑁𝑚𝑚 + 𝑄𝑄(�̂�𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛) − �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)]2𝑁𝑁′
𝑛𝑛=1 ,  𝑚𝑚 = 1,2, . .𝑀𝑀      (9) 

The average of the upper bound values, determined according to Eq. (8), can be calculated and 
the arithmetic average of the true objective function values (calculated for independent values of m 
for each parameter set) can be observed. 

�̅�𝑔𝑁𝑁′𝑀𝑀 ≔ 1
𝑀𝑀∑ �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1 ,  𝑚𝑚 = 1,2, … ,𝑀𝑀                      (10) 
Also, the average of the variances calculated by Eq. (9) can be determined. With Eq. (11), the 

average deviation of the true objective function values is obtained from the average true objective 
function. 

𝑆𝑆�̂̅�𝑔𝑁𝑁′𝑀𝑀
2 ≔ 1

𝑀𝑀∑ 𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2𝑀𝑀

𝑚𝑚=1                    (11) 
Step 4: Eq. (12) is used to determine the optimal gap of the �̂�𝑥𝑁𝑁𝑚𝑚 solution. When this value 

approaches zero, it indicates convergence to the optimum solution.   
𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚) = �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚) − �̅�𝑣𝑁𝑁𝑀𝑀                              (12) 

The estimated variance of the optimal gap of the related solution obtained by Eq. (11) is 
calculated as follows: 

𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (�̂�𝑥𝑁𝑁𝑚𝑚) = 𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2 + 𝑆𝑆�̅�𝑣𝑁𝑁𝑀𝑀

2                                                (13) 
Also, the average of the optimal gap values is calculated by Eq. (14). This value shows the 

average of the optimal gap values obtained from each parameter set. 
𝑔𝑔𝑔𝑔𝑝𝑝̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ≔

1
𝑀𝑀∑ 𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1                          (14) 
The average of the optimal gap and its variance are used in the calculation of confidence 

interval values. Accordingly, the average of the variances of the optimal gaps is found from:   
𝑆𝑆�̅�𝑔𝑔𝑔𝑔𝑔2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀
𝑚𝑚=1                                                   (15) 

The confidence interval for the average of the optimal gap is calculated [42]. By using this 
equation, it can be seen whether the average gap values are within the confidence interval 
boundaries.  

𝑔𝑔𝑔𝑔𝑝𝑝̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ∓ 𝑡𝑡(𝛼𝛼 2),(𝑀𝑀−1)⁄ (�̅�𝑆𝑔𝑔𝑔𝑔𝑔𝑔
2

√𝑀𝑀 )                (16) 
 
 

(6)

The SAA problem’s optimum value is shown by 𝑣𝑣𝑁𝑁𝑚𝑚. Thus, it is possible to determine the 
optimum solution for each m (�̂�𝑥𝑁𝑁𝑚𝑚, … , �̂�𝑥𝑁𝑁𝑀𝑀) and objective function value (𝑣𝑣𝑁𝑁𝑚𝑚, … , 𝑣𝑣𝑁𝑁𝑀𝑀).  

Step 2: The average of the optimal objective function values determined in the first stage (�̅�𝑣𝑁𝑁𝑀𝑀) 
is calculated. This computation is also applied to eight different parameter sets. 

�̅�𝑣𝑁𝑁𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑣𝑣𝑁𝑁𝑚𝑚

𝑀𝑀
𝑚𝑚=1                                                    (6)      

�̅�𝑣𝑁𝑁𝑀𝑀 is an unbiased estimator for 𝔼𝔼[𝑣𝑣𝑁𝑁] and a statistical lower limit for the optimum value of 
the true problem 𝑣𝑣∗. A variance estimator for �̅�𝑣𝑁𝑁𝑀𝑀 is determined by Eq. (7). With this calculation, the 
average deviation of the objective function values from the average objective function is obtained. 

𝑆𝑆�̅�𝑣𝑁𝑁𝑀𝑀
2 : = 1

𝑀𝑀(𝑀𝑀−1)  ∑ (𝑣𝑣𝑁𝑁𝑚𝑚 − �̅�𝑣𝑁𝑁𝑀𝑀)2𝑀𝑀
𝑚𝑚=1                                              (7) 

Step 3: For each independent random sample with a reference sample size N', the true 
objective function value estimate is determined by resolving the following formulation, using the 
best solutions from step 1. 

�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚): = 𝑐𝑐𝑇𝑇�̂�𝑥𝑁𝑁𝑚𝑚 + 1
𝑁𝑁′∑ 𝑄𝑄(�̂�𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛)𝑁𝑁′

𝑛𝑛=1 ,    𝑚𝑚 = 1,2, … ,𝑀𝑀             (8) 
The statistical upper bound for the optimum value of the true problem 𝑣𝑣∗ is determined by Eq. 

(8) and the variance estimator of this value is calculated as follows: 
𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2 : = 1

𝑁𝑁′(𝑁𝑁′−1)  ∑ [𝑐𝑐𝑇𝑇�̂�𝑥𝑁𝑁𝑚𝑚 + 𝑄𝑄(�̂�𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛) − �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)]2𝑁𝑁′
𝑛𝑛=1 ,  𝑚𝑚 = 1,2, . .𝑀𝑀      (9) 

The average of the upper bound values, determined according to Eq. (8), can be calculated and 
the arithmetic average of the true objective function values (calculated for independent values of m 
for each parameter set) can be observed. 

�̅�𝑔𝑁𝑁′𝑀𝑀 ≔ 1
𝑀𝑀∑ �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1 ,  𝑚𝑚 = 1,2, … ,𝑀𝑀                      (10) 
Also, the average of the variances calculated by Eq. (9) can be determined. With Eq. (11), the 

average deviation of the true objective function values is obtained from the average true objective 
function. 

𝑆𝑆�̂̅�𝑔𝑁𝑁′𝑀𝑀
2 ≔ 1

𝑀𝑀∑ 𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2𝑀𝑀

𝑚𝑚=1                    (11) 
Step 4: Eq. (12) is used to determine the optimal gap of the �̂�𝑥𝑁𝑁𝑚𝑚 solution. When this value 

approaches zero, it indicates convergence to the optimum solution.   
𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚) = �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚) − �̅�𝑣𝑁𝑁𝑀𝑀                              (12) 

The estimated variance of the optimal gap of the related solution obtained by Eq. (11) is 
calculated as follows: 

𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (�̂�𝑥𝑁𝑁𝑚𝑚) = 𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2 + 𝑆𝑆�̅�𝑣𝑁𝑁𝑀𝑀

2                                                (13) 
Also, the average of the optimal gap values is calculated by Eq. (14). This value shows the 

average of the optimal gap values obtained from each parameter set. 
𝑔𝑔𝑔𝑔𝑝𝑝̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ≔

1
𝑀𝑀∑ 𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1                          (14) 
The average of the optimal gap and its variance are used in the calculation of confidence 

interval values. Accordingly, the average of the variances of the optimal gaps is found from:   
𝑆𝑆�̅�𝑔𝑔𝑔𝑔𝑔2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀
𝑚𝑚=1                                                   (15) 

The confidence interval for the average of the optimal gap is calculated [42]. By using this 
equation, it can be seen whether the average gap values are within the confidence interval 
boundaries.  

𝑔𝑔𝑔𝑔𝑝𝑝̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ∓ 𝑡𝑡(𝛼𝛼 2),(𝑀𝑀−1)⁄ (�̅�𝑆𝑔𝑔𝑔𝑔𝑔𝑔
2

√𝑀𝑀 )                (16) 
 
 

 is an unbiased estimator for 

The SAA problem’s optimum value is shown by 𝑣𝑣𝑁𝑁𝑚𝑚. Thus, it is possible to determine the 
optimum solution for each m (�̂�𝑥𝑁𝑁𝑚𝑚, … , �̂�𝑥𝑁𝑁𝑀𝑀) and objective function value (𝑣𝑣𝑁𝑁𝑚𝑚, … , 𝑣𝑣𝑁𝑁𝑀𝑀).  

Step 2: The average of the optimal objective function values determined in the first stage (�̅�𝑣𝑁𝑁𝑀𝑀) 
is calculated. This computation is also applied to eight different parameter sets. 

�̅�𝑣𝑁𝑁𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑣𝑣𝑁𝑁𝑚𝑚

𝑀𝑀
𝑚𝑚=1                                                    (6)      

�̅�𝑣𝑁𝑁𝑀𝑀 is an unbiased estimator for 𝔼𝔼[𝑣𝑣𝑁𝑁] and a statistical lower limit for the optimum value of 
the true problem 𝑣𝑣∗. A variance estimator for �̅�𝑣𝑁𝑁𝑀𝑀 is determined by Eq. (7). With this calculation, the 
average deviation of the objective function values from the average objective function is obtained. 

𝑆𝑆�̅�𝑣𝑁𝑁𝑀𝑀
2 : = 1

𝑀𝑀(𝑀𝑀−1)  ∑ (𝑣𝑣𝑁𝑁𝑚𝑚 − �̅�𝑣𝑁𝑁𝑀𝑀)2𝑀𝑀
𝑚𝑚=1                                              (7) 

Step 3: For each independent random sample with a reference sample size N', the true 
objective function value estimate is determined by resolving the following formulation, using the 
best solutions from step 1. 

�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚): = 𝑐𝑐𝑇𝑇�̂�𝑥𝑁𝑁𝑚𝑚 + 1
𝑁𝑁′∑ 𝑄𝑄(�̂�𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛)𝑁𝑁′

𝑛𝑛=1 ,    𝑚𝑚 = 1,2, … ,𝑀𝑀             (8) 
The statistical upper bound for the optimum value of the true problem 𝑣𝑣∗ is determined by Eq. 

(8) and the variance estimator of this value is calculated as follows: 
𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2 : = 1

𝑁𝑁′(𝑁𝑁′−1)  ∑ [𝑐𝑐𝑇𝑇�̂�𝑥𝑁𝑁𝑚𝑚 + 𝑄𝑄(�̂�𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛) − �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)]2𝑁𝑁′
𝑛𝑛=1 ,  𝑚𝑚 = 1,2, . .𝑀𝑀      (9) 

The average of the upper bound values, determined according to Eq. (8), can be calculated and 
the arithmetic average of the true objective function values (calculated for independent values of m 
for each parameter set) can be observed. 

�̅�𝑔𝑁𝑁′𝑀𝑀 ≔ 1
𝑀𝑀∑ �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1 ,  𝑚𝑚 = 1,2, … ,𝑀𝑀                      (10) 
Also, the average of the variances calculated by Eq. (9) can be determined. With Eq. (11), the 

average deviation of the true objective function values is obtained from the average true objective 
function. 

𝑆𝑆�̂̅�𝑔𝑁𝑁′𝑀𝑀
2 ≔ 1

𝑀𝑀∑ 𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2𝑀𝑀

𝑚𝑚=1                    (11) 
Step 4: Eq. (12) is used to determine the optimal gap of the �̂�𝑥𝑁𝑁𝑚𝑚 solution. When this value 

approaches zero, it indicates convergence to the optimum solution.   
𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚) = �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚) − �̅�𝑣𝑁𝑁𝑀𝑀                              (12) 

The estimated variance of the optimal gap of the related solution obtained by Eq. (11) is 
calculated as follows: 

𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (�̂�𝑥𝑁𝑁𝑚𝑚) = 𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2 + 𝑆𝑆�̅�𝑣𝑁𝑁𝑀𝑀

2                                                (13) 
Also, the average of the optimal gap values is calculated by Eq. (14). This value shows the 

average of the optimal gap values obtained from each parameter set. 
𝑔𝑔𝑔𝑔𝑝𝑝̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ≔

1
𝑀𝑀∑ 𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1                          (14) 
The average of the optimal gap and its variance are used in the calculation of confidence 

interval values. Accordingly, the average of the variances of the optimal gaps is found from:   
𝑆𝑆�̅�𝑔𝑔𝑔𝑔𝑔2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀
𝑚𝑚=1                                                   (15) 

The confidence interval for the average of the optimal gap is calculated [42]. By using this 
equation, it can be seen whether the average gap values are within the confidence interval 
boundaries.  

𝑔𝑔𝑔𝑔𝑝𝑝̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ∓ 𝑡𝑡(𝛼𝛼 2),(𝑀𝑀−1)⁄ (�̅�𝑆𝑔𝑔𝑔𝑔𝑔𝑔
2

√𝑀𝑀 )                (16) 
 
 

 and a statistical 
lower limit for the optimum value of the true problem 

The SAA problem’s optimum value is shown by 𝑣𝑣𝑁𝑁𝑚𝑚. Thus, it is possible to determine the 
optimum solution for each m (�̂�𝑥𝑁𝑁𝑚𝑚, … , �̂�𝑥𝑁𝑁𝑀𝑀) and objective function value (𝑣𝑣𝑁𝑁𝑚𝑚, … , 𝑣𝑣𝑁𝑁𝑀𝑀).  

Step 2: The average of the optimal objective function values determined in the first stage (�̅�𝑣𝑁𝑁𝑀𝑀) 
is calculated. This computation is also applied to eight different parameter sets. 

�̅�𝑣𝑁𝑁𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑣𝑣𝑁𝑁𝑚𝑚

𝑀𝑀
𝑚𝑚=1                                                    (6)      

�̅�𝑣𝑁𝑁𝑀𝑀 is an unbiased estimator for 𝔼𝔼[𝑣𝑣𝑁𝑁] and a statistical lower limit for the optimum value of 
the true problem 𝑣𝑣∗. A variance estimator for �̅�𝑣𝑁𝑁𝑀𝑀 is determined by Eq. (7). With this calculation, the 
average deviation of the objective function values from the average objective function is obtained. 

𝑆𝑆�̅�𝑣𝑁𝑁𝑀𝑀
2 : = 1

𝑀𝑀(𝑀𝑀−1)  ∑ (𝑣𝑣𝑁𝑁𝑚𝑚 − �̅�𝑣𝑁𝑁𝑀𝑀)2𝑀𝑀
𝑚𝑚=1                                              (7) 

Step 3: For each independent random sample with a reference sample size N', the true 
objective function value estimate is determined by resolving the following formulation, using the 
best solutions from step 1. 

�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚): = 𝑐𝑐𝑇𝑇�̂�𝑥𝑁𝑁𝑚𝑚 + 1
𝑁𝑁′∑ 𝑄𝑄(�̂�𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛)𝑁𝑁′

𝑛𝑛=1 ,    𝑚𝑚 = 1,2, … ,𝑀𝑀             (8) 
The statistical upper bound for the optimum value of the true problem 𝑣𝑣∗ is determined by Eq. 

(8) and the variance estimator of this value is calculated as follows: 
𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2 : = 1

𝑁𝑁′(𝑁𝑁′−1)  ∑ [𝑐𝑐𝑇𝑇�̂�𝑥𝑁𝑁𝑚𝑚 + 𝑄𝑄(�̂�𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛) − �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)]2𝑁𝑁′
𝑛𝑛=1 ,  𝑚𝑚 = 1,2, . .𝑀𝑀      (9) 

The average of the upper bound values, determined according to Eq. (8), can be calculated and 
the arithmetic average of the true objective function values (calculated for independent values of m 
for each parameter set) can be observed. 

�̅�𝑔𝑁𝑁′𝑀𝑀 ≔ 1
𝑀𝑀∑ �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1 ,  𝑚𝑚 = 1,2, … ,𝑀𝑀                      (10) 
Also, the average of the variances calculated by Eq. (9) can be determined. With Eq. (11), the 

average deviation of the true objective function values is obtained from the average true objective 
function. 

𝑆𝑆�̂̅�𝑔𝑁𝑁′𝑀𝑀
2 ≔ 1

𝑀𝑀∑ 𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2𝑀𝑀

𝑚𝑚=1                    (11) 
Step 4: Eq. (12) is used to determine the optimal gap of the �̂�𝑥𝑁𝑁𝑚𝑚 solution. When this value 

approaches zero, it indicates convergence to the optimum solution.   
𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚) = �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚) − �̅�𝑣𝑁𝑁𝑀𝑀                              (12) 

The estimated variance of the optimal gap of the related solution obtained by Eq. (11) is 
calculated as follows: 

𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (�̂�𝑥𝑁𝑁𝑚𝑚) = 𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2 + 𝑆𝑆�̅�𝑣𝑁𝑁𝑀𝑀

2                                                (13) 
Also, the average of the optimal gap values is calculated by Eq. (14). This value shows the 

average of the optimal gap values obtained from each parameter set. 
𝑔𝑔𝑔𝑔𝑝𝑝̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ≔

1
𝑀𝑀∑ 𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1                          (14) 
The average of the optimal gap and its variance are used in the calculation of confidence 

interval values. Accordingly, the average of the variances of the optimal gaps is found from:   
𝑆𝑆�̅�𝑔𝑔𝑔𝑔𝑔2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀
𝑚𝑚=1                                                   (15) 

The confidence interval for the average of the optimal gap is calculated [42]. By using this 
equation, it can be seen whether the average gap values are within the confidence interval 
boundaries.  

𝑔𝑔𝑔𝑔𝑝𝑝̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ∓ 𝑡𝑡(𝛼𝛼 2),(𝑀𝑀−1)⁄ (�̅�𝑆𝑔𝑔𝑔𝑔𝑔𝑔
2

√𝑀𝑀 )                (16) 
 
 

*. 
A variance estimator for 

The SAA problem’s optimum value is shown by 𝑣𝑣𝑁𝑁𝑚𝑚. Thus, it is possible to determine the 
optimum solution for each m (�̂�𝑥𝑁𝑁𝑚𝑚, … , �̂�𝑥𝑁𝑁𝑀𝑀) and objective function value (𝑣𝑣𝑁𝑁𝑚𝑚, … , 𝑣𝑣𝑁𝑁𝑀𝑀).  

Step 2: The average of the optimal objective function values determined in the first stage (�̅�𝑣𝑁𝑁𝑀𝑀) 
is calculated. This computation is also applied to eight different parameter sets. 

�̅�𝑣𝑁𝑁𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑣𝑣𝑁𝑁𝑚𝑚

𝑀𝑀
𝑚𝑚=1                                                    (6)      

�̅�𝑣𝑁𝑁𝑀𝑀 is an unbiased estimator for 𝔼𝔼[𝑣𝑣𝑁𝑁] and a statistical lower limit for the optimum value of 
the true problem 𝑣𝑣∗. A variance estimator for �̅�𝑣𝑁𝑁𝑀𝑀 is determined by Eq. (7). With this calculation, the 
average deviation of the objective function values from the average objective function is obtained. 

𝑆𝑆�̅�𝑣𝑁𝑁𝑀𝑀
2 : = 1

𝑀𝑀(𝑀𝑀−1)  ∑ (𝑣𝑣𝑁𝑁𝑚𝑚 − �̅�𝑣𝑁𝑁𝑀𝑀)2𝑀𝑀
𝑚𝑚=1                                              (7) 

Step 3: For each independent random sample with a reference sample size N', the true 
objective function value estimate is determined by resolving the following formulation, using the 
best solutions from step 1. 

�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚): = 𝑐𝑐𝑇𝑇�̂�𝑥𝑁𝑁𝑚𝑚 + 1
𝑁𝑁′∑ 𝑄𝑄(�̂�𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛)𝑁𝑁′

𝑛𝑛=1 ,    𝑚𝑚 = 1,2, … ,𝑀𝑀             (8) 
The statistical upper bound for the optimum value of the true problem 𝑣𝑣∗ is determined by Eq. 

(8) and the variance estimator of this value is calculated as follows: 
𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2 : = 1

𝑁𝑁′(𝑁𝑁′−1)  ∑ [𝑐𝑐𝑇𝑇�̂�𝑥𝑁𝑁𝑚𝑚 + 𝑄𝑄(�̂�𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛) − �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)]2𝑁𝑁′
𝑛𝑛=1 ,  𝑚𝑚 = 1,2, . .𝑀𝑀      (9) 

The average of the upper bound values, determined according to Eq. (8), can be calculated and 
the arithmetic average of the true objective function values (calculated for independent values of m 
for each parameter set) can be observed. 

�̅�𝑔𝑁𝑁′𝑀𝑀 ≔ 1
𝑀𝑀∑ �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1 ,  𝑚𝑚 = 1,2, … ,𝑀𝑀                      (10) 
Also, the average of the variances calculated by Eq. (9) can be determined. With Eq. (11), the 

average deviation of the true objective function values is obtained from the average true objective 
function. 

𝑆𝑆�̂̅�𝑔𝑁𝑁′𝑀𝑀
2 ≔ 1

𝑀𝑀∑ 𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2𝑀𝑀

𝑚𝑚=1                    (11) 
Step 4: Eq. (12) is used to determine the optimal gap of the �̂�𝑥𝑁𝑁𝑚𝑚 solution. When this value 

approaches zero, it indicates convergence to the optimum solution.   
𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚) = �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚) − �̅�𝑣𝑁𝑁𝑀𝑀                              (12) 

The estimated variance of the optimal gap of the related solution obtained by Eq. (11) is 
calculated as follows: 

𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (�̂�𝑥𝑁𝑁𝑚𝑚) = 𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2 + 𝑆𝑆�̅�𝑣𝑁𝑁𝑀𝑀

2                                                (13) 
Also, the average of the optimal gap values is calculated by Eq. (14). This value shows the 

average of the optimal gap values obtained from each parameter set. 
𝑔𝑔𝑔𝑔𝑝𝑝̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ≔

1
𝑀𝑀∑ 𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1                          (14) 
The average of the optimal gap and its variance are used in the calculation of confidence 

interval values. Accordingly, the average of the variances of the optimal gaps is found from:   
𝑆𝑆�̅�𝑔𝑔𝑔𝑔𝑔2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀
𝑚𝑚=1                                                   (15) 

The confidence interval for the average of the optimal gap is calculated [42]. By using this 
equation, it can be seen whether the average gap values are within the confidence interval 
boundaries.  

𝑔𝑔𝑔𝑔𝑝𝑝̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ∓ 𝑡𝑡(𝛼𝛼 2),(𝑀𝑀−1)⁄ (�̅�𝑆𝑔𝑔𝑔𝑔𝑔𝑔
2

√𝑀𝑀 )                (16) 
 
 

 is determined by Eq. (7). With 
The SAA problem’s optimum value is shown by 𝑣𝑣𝑁𝑁𝑚𝑚. Thus, it is possible to determine the 

optimum solution for each m (�̂�𝑥𝑁𝑁𝑚𝑚, … , �̂�𝑥𝑁𝑁𝑀𝑀) and objective function value (𝑣𝑣𝑁𝑁𝑚𝑚, … , 𝑣𝑣𝑁𝑁𝑀𝑀).  
Step 2: The average of the optimal objective function values determined in the first stage (�̅�𝑣𝑁𝑁𝑀𝑀) 

is calculated. This computation is also applied to eight different parameter sets. 
�̅�𝑣𝑁𝑁𝑀𝑀 ≔ 1

𝑀𝑀∑ 𝑣𝑣𝑁𝑁𝑚𝑚
𝑀𝑀
𝑚𝑚=1                                                    (6)      

�̅�𝑣𝑁𝑁𝑀𝑀 is an unbiased estimator for 𝔼𝔼[𝑣𝑣𝑁𝑁] and a statistical lower limit for the optimum value of 
the true problem 𝑣𝑣∗. A variance estimator for �̅�𝑣𝑁𝑁𝑀𝑀 is determined by Eq. (7). With this calculation, the 
average deviation of the objective function values from the average objective function is obtained. 

𝑆𝑆�̅�𝑣𝑁𝑁𝑀𝑀
2 : = 1

𝑀𝑀(𝑀𝑀−1)  ∑ (𝑣𝑣𝑁𝑁𝑚𝑚 − �̅�𝑣𝑁𝑁𝑀𝑀)2𝑀𝑀
𝑚𝑚=1                                              (7) 

Step 3: For each independent random sample with a reference sample size N', the true 
objective function value estimate is determined by resolving the following formulation, using the 
best solutions from step 1. 

�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚): = 𝑐𝑐𝑇𝑇�̂�𝑥𝑁𝑁𝑚𝑚 + 1
𝑁𝑁′∑ 𝑄𝑄(�̂�𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛)𝑁𝑁′

𝑛𝑛=1 ,    𝑚𝑚 = 1,2, … ,𝑀𝑀             (8) 
The statistical upper bound for the optimum value of the true problem 𝑣𝑣∗ is determined by Eq. 

(8) and the variance estimator of this value is calculated as follows: 
𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2 : = 1

𝑁𝑁′(𝑁𝑁′−1)  ∑ [𝑐𝑐𝑇𝑇�̂�𝑥𝑁𝑁𝑚𝑚 + 𝑄𝑄(�̂�𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛) − �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)]2𝑁𝑁′
𝑛𝑛=1 ,  𝑚𝑚 = 1,2, . .𝑀𝑀      (9) 

The average of the upper bound values, determined according to Eq. (8), can be calculated and 
the arithmetic average of the true objective function values (calculated for independent values of m 
for each parameter set) can be observed. 

�̅�𝑔𝑁𝑁′𝑀𝑀 ≔ 1
𝑀𝑀∑ �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1 ,  𝑚𝑚 = 1,2, … ,𝑀𝑀                      (10) 
Also, the average of the variances calculated by Eq. (9) can be determined. With Eq. (11), the 

average deviation of the true objective function values is obtained from the average true objective 
function. 

𝑆𝑆�̂̅�𝑔𝑁𝑁′𝑀𝑀
2 ≔ 1

𝑀𝑀∑ 𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2𝑀𝑀

𝑚𝑚=1                    (11) 
Step 4: Eq. (12) is used to determine the optimal gap of the �̂�𝑥𝑁𝑁𝑚𝑚 solution. When this value 

approaches zero, it indicates convergence to the optimum solution.   
𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚) = �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚) − �̅�𝑣𝑁𝑁𝑀𝑀                              (12) 

The estimated variance of the optimal gap of the related solution obtained by Eq. (11) is 
calculated as follows: 

𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (�̂�𝑥𝑁𝑁𝑚𝑚) = 𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2 + 𝑆𝑆�̅�𝑣𝑁𝑁𝑀𝑀

2                                                (13) 
Also, the average of the optimal gap values is calculated by Eq. (14). This value shows the 

average of the optimal gap values obtained from each parameter set. 
𝑔𝑔𝑔𝑔𝑝𝑝̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ≔

1
𝑀𝑀∑ 𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1                          (14) 
The average of the optimal gap and its variance are used in the calculation of confidence 

interval values. Accordingly, the average of the variances of the optimal gaps is found from:   
𝑆𝑆�̅�𝑔𝑔𝑔𝑔𝑔2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀
𝑚𝑚=1                                                   (15) 

The confidence interval for the average of the optimal gap is calculated [42]. By using this 
equation, it can be seen whether the average gap values are within the confidence interval 
boundaries.  

𝑔𝑔𝑔𝑔𝑝𝑝̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ∓ 𝑡𝑡(𝛼𝛼 2),(𝑀𝑀−1)⁄ (�̅�𝑆𝑔𝑔𝑔𝑔𝑔𝑔
2

√𝑀𝑀 )                (16) 
 
 

The SAA problem’s optimum value is shown by 𝑣𝑣𝑁𝑁𝑚𝑚. Thus, it is possible to determine the 
optimum solution for each m (�̂�𝑥𝑁𝑁𝑚𝑚, … , �̂�𝑥𝑁𝑁𝑀𝑀) and objective function value (𝑣𝑣𝑁𝑁𝑚𝑚, … , 𝑣𝑣𝑁𝑁𝑀𝑀).  

Step 2: The average of the optimal objective function values determined in the first stage (�̅�𝑣𝑁𝑁𝑀𝑀) 
is calculated. This computation is also applied to eight different parameter sets. 

�̅�𝑣𝑁𝑁𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑣𝑣𝑁𝑁𝑚𝑚

𝑀𝑀
𝑚𝑚=1                                                    (6)      

�̅�𝑣𝑁𝑁𝑀𝑀 is an unbiased estimator for 𝔼𝔼[𝑣𝑣𝑁𝑁] and a statistical lower limit for the optimum value of 
the true problem 𝑣𝑣∗. A variance estimator for �̅�𝑣𝑁𝑁𝑀𝑀 is determined by Eq. (7). With this calculation, the 
average deviation of the objective function values from the average objective function is obtained. 

𝑆𝑆�̅�𝑣𝑁𝑁𝑀𝑀
2 : = 1

𝑀𝑀(𝑀𝑀−1)  ∑ (𝑣𝑣𝑁𝑁𝑚𝑚 − �̅�𝑣𝑁𝑁𝑀𝑀)2𝑀𝑀
𝑚𝑚=1                                              (7) 

Step 3: For each independent random sample with a reference sample size N', the true 
objective function value estimate is determined by resolving the following formulation, using the 
best solutions from step 1. 

�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚): = 𝑐𝑐𝑇𝑇�̂�𝑥𝑁𝑁𝑚𝑚 + 1
𝑁𝑁′∑ 𝑄𝑄(�̂�𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛)𝑁𝑁′

𝑛𝑛=1 ,    𝑚𝑚 = 1,2, … ,𝑀𝑀             (8) 
The statistical upper bound for the optimum value of the true problem 𝑣𝑣∗ is determined by Eq. 

(8) and the variance estimator of this value is calculated as follows: 
𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2 : = 1

𝑁𝑁′(𝑁𝑁′−1)  ∑ [𝑐𝑐𝑇𝑇�̂�𝑥𝑁𝑁𝑚𝑚 + 𝑄𝑄(�̂�𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛) − �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)]2𝑁𝑁′
𝑛𝑛=1 ,  𝑚𝑚 = 1,2, . .𝑀𝑀      (9) 

The average of the upper bound values, determined according to Eq. (8), can be calculated and 
the arithmetic average of the true objective function values (calculated for independent values of m 
for each parameter set) can be observed. 

�̅�𝑔𝑁𝑁′𝑀𝑀 ≔ 1
𝑀𝑀∑ �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1 ,  𝑚𝑚 = 1,2, … ,𝑀𝑀                      (10) 
Also, the average of the variances calculated by Eq. (9) can be determined. With Eq. (11), the 

average deviation of the true objective function values is obtained from the average true objective 
function. 

𝑆𝑆�̂̅�𝑔𝑁𝑁′𝑀𝑀
2 ≔ 1

𝑀𝑀∑ 𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2𝑀𝑀

𝑚𝑚=1                    (11) 
Step 4: Eq. (12) is used to determine the optimal gap of the �̂�𝑥𝑁𝑁𝑚𝑚 solution. When this value 

approaches zero, it indicates convergence to the optimum solution.   
𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚) = �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚) − �̅�𝑣𝑁𝑁𝑀𝑀                              (12) 

The estimated variance of the optimal gap of the related solution obtained by Eq. (11) is 
calculated as follows: 

𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (�̂�𝑥𝑁𝑁𝑚𝑚) = 𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2 + 𝑆𝑆�̅�𝑣𝑁𝑁𝑀𝑀

2                                                (13) 
Also, the average of the optimal gap values is calculated by Eq. (14). This value shows the 

average of the optimal gap values obtained from each parameter set. 
𝑔𝑔𝑔𝑔𝑝𝑝̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ≔

1
𝑀𝑀∑ 𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1                          (14) 
The average of the optimal gap and its variance are used in the calculation of confidence 

interval values. Accordingly, the average of the variances of the optimal gaps is found from:   
𝑆𝑆�̅�𝑔𝑔𝑔𝑔𝑔2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀
𝑚𝑚=1                                                   (15) 

The confidence interval for the average of the optimal gap is calculated [42]. By using this 
equation, it can be seen whether the average gap values are within the confidence interval 
boundaries.  

𝑔𝑔𝑔𝑔𝑝𝑝̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ∓ 𝑡𝑡(𝛼𝛼 2),(𝑀𝑀−1)⁄ (�̅�𝑆𝑔𝑔𝑔𝑔𝑔𝑔
2

√𝑀𝑀 )                (16) 
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this calculation, the average deviation of the objective function 
values from the average objective function is obtained.

The SAA problem’s optimum value is shown by 𝑣𝑣𝑁𝑁𝑚𝑚. Thus, it is possible to determine the 
optimum solution for each m (�̂�𝑥𝑁𝑁𝑚𝑚, … , �̂�𝑥𝑁𝑁𝑀𝑀) and objective function value (𝑣𝑣𝑁𝑁𝑚𝑚, … , 𝑣𝑣𝑁𝑁𝑀𝑀).  

Step 2: The average of the optimal objective function values determined in the first stage (�̅�𝑣𝑁𝑁𝑀𝑀) 
is calculated. This computation is also applied to eight different parameter sets. 

�̅�𝑣𝑁𝑁𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑣𝑣𝑁𝑁𝑚𝑚

𝑀𝑀
𝑚𝑚=1                                                    (6)      

�̅�𝑣𝑁𝑁𝑀𝑀 is an unbiased estimator for 𝔼𝔼[𝑣𝑣𝑁𝑁] and a statistical lower limit for the optimum value of 
the true problem 𝑣𝑣∗. A variance estimator for �̅�𝑣𝑁𝑁𝑀𝑀 is determined by Eq. (7). With this calculation, the 
average deviation of the objective function values from the average objective function is obtained. 

𝑆𝑆�̅�𝑣𝑁𝑁𝑀𝑀
2 : = 1

𝑀𝑀(𝑀𝑀−1)  ∑ (𝑣𝑣𝑁𝑁𝑚𝑚 − �̅�𝑣𝑁𝑁𝑀𝑀)2𝑀𝑀
𝑚𝑚=1                                              (7) 

Step 3: For each independent random sample with a reference sample size N', the true 
objective function value estimate is determined by resolving the following formulation, using the 
best solutions from step 1. 

�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚): = 𝑐𝑐𝑇𝑇�̂�𝑥𝑁𝑁𝑚𝑚 + 1
𝑁𝑁′∑ 𝑄𝑄(�̂�𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛)𝑁𝑁′

𝑛𝑛=1 ,    𝑚𝑚 = 1,2, … ,𝑀𝑀             (8) 
The statistical upper bound for the optimum value of the true problem 𝑣𝑣∗ is determined by Eq. 

(8) and the variance estimator of this value is calculated as follows: 
𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2 : = 1

𝑁𝑁′(𝑁𝑁′−1)  ∑ [𝑐𝑐𝑇𝑇�̂�𝑥𝑁𝑁𝑚𝑚 + 𝑄𝑄(�̂�𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛) − �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)]2𝑁𝑁′
𝑛𝑛=1 ,  𝑚𝑚 = 1,2, . .𝑀𝑀      (9) 

The average of the upper bound values, determined according to Eq. (8), can be calculated and 
the arithmetic average of the true objective function values (calculated for independent values of m 
for each parameter set) can be observed. 

�̅�𝑔𝑁𝑁′𝑀𝑀 ≔ 1
𝑀𝑀∑ �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1 ,  𝑚𝑚 = 1,2, … ,𝑀𝑀                      (10) 
Also, the average of the variances calculated by Eq. (9) can be determined. With Eq. (11), the 

average deviation of the true objective function values is obtained from the average true objective 
function. 

𝑆𝑆�̂̅�𝑔𝑁𝑁′𝑀𝑀
2 ≔ 1

𝑀𝑀∑ 𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2𝑀𝑀

𝑚𝑚=1                    (11) 
Step 4: Eq. (12) is used to determine the optimal gap of the �̂�𝑥𝑁𝑁𝑚𝑚 solution. When this value 

approaches zero, it indicates convergence to the optimum solution.   
𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚) = �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚) − �̅�𝑣𝑁𝑁𝑀𝑀                              (12) 

The estimated variance of the optimal gap of the related solution obtained by Eq. (11) is 
calculated as follows: 

𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (�̂�𝑥𝑁𝑁𝑚𝑚) = 𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2 + 𝑆𝑆�̅�𝑣𝑁𝑁𝑀𝑀

2                                                (13) 
Also, the average of the optimal gap values is calculated by Eq. (14). This value shows the 

average of the optimal gap values obtained from each parameter set. 
𝑔𝑔𝑔𝑔𝑝𝑝̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ≔

1
𝑀𝑀∑ 𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1                          (14) 
The average of the optimal gap and its variance are used in the calculation of confidence 

interval values. Accordingly, the average of the variances of the optimal gaps is found from:   
𝑆𝑆�̅�𝑔𝑔𝑔𝑔𝑔2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀
𝑚𝑚=1                                                   (15) 

The confidence interval for the average of the optimal gap is calculated [42]. By using this 
equation, it can be seen whether the average gap values are within the confidence interval 
boundaries.  

𝑔𝑔𝑔𝑔𝑝𝑝̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ∓ 𝑡𝑡(𝛼𝛼 2),(𝑀𝑀−1)⁄ (�̅�𝑆𝑔𝑔𝑔𝑔𝑔𝑔
2

√𝑀𝑀 )                (16) 
 
 

(7)

Step 3: For each independent random sample with 
a reference sample size N', the true objective function value 
estimate is determined by resolving the following formulation, 
using the best solutions from step 1.

The SAA problem’s optimum value is shown by 𝑣𝑣𝑁𝑁𝑚𝑚. Thus, it is possible to determine the 
optimum solution for each m (�̂�𝑥𝑁𝑁𝑚𝑚, … , �̂�𝑥𝑁𝑁𝑀𝑀) and objective function value (𝑣𝑣𝑁𝑁𝑚𝑚, … , 𝑣𝑣𝑁𝑁𝑀𝑀).  

Step 2: The average of the optimal objective function values determined in the first stage (�̅�𝑣𝑁𝑁𝑀𝑀) 
is calculated. This computation is also applied to eight different parameter sets. 

�̅�𝑣𝑁𝑁𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑣𝑣𝑁𝑁𝑚𝑚

𝑀𝑀
𝑚𝑚=1                                                    (6)      

�̅�𝑣𝑁𝑁𝑀𝑀 is an unbiased estimator for 𝔼𝔼[𝑣𝑣𝑁𝑁] and a statistical lower limit for the optimum value of 
the true problem 𝑣𝑣∗. A variance estimator for �̅�𝑣𝑁𝑁𝑀𝑀 is determined by Eq. (7). With this calculation, the 
average deviation of the objective function values from the average objective function is obtained. 

𝑆𝑆�̅�𝑣𝑁𝑁𝑀𝑀
2 : = 1

𝑀𝑀(𝑀𝑀−1)  ∑ (𝑣𝑣𝑁𝑁𝑚𝑚 − �̅�𝑣𝑁𝑁𝑀𝑀)2𝑀𝑀
𝑚𝑚=1                                              (7) 

Step 3: For each independent random sample with a reference sample size N', the true 
objective function value estimate is determined by resolving the following formulation, using the 
best solutions from step 1. 

�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚): = 𝑐𝑐𝑇𝑇�̂�𝑥𝑁𝑁𝑚𝑚 + 1
𝑁𝑁′∑ 𝑄𝑄(�̂�𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛)𝑁𝑁′

𝑛𝑛=1 ,    𝑚𝑚 = 1,2, … ,𝑀𝑀             (8) 
The statistical upper bound for the optimum value of the true problem 𝑣𝑣∗ is determined by Eq. 

(8) and the variance estimator of this value is calculated as follows: 
𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2 : = 1

𝑁𝑁′(𝑁𝑁′−1)  ∑ [𝑐𝑐𝑇𝑇�̂�𝑥𝑁𝑁𝑚𝑚 + 𝑄𝑄(�̂�𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛) − �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)]2𝑁𝑁′
𝑛𝑛=1 ,  𝑚𝑚 = 1,2, . .𝑀𝑀      (9) 

The average of the upper bound values, determined according to Eq. (8), can be calculated and 
the arithmetic average of the true objective function values (calculated for independent values of m 
for each parameter set) can be observed. 

�̅�𝑔𝑁𝑁′𝑀𝑀 ≔ 1
𝑀𝑀∑ �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1 ,  𝑚𝑚 = 1,2, … ,𝑀𝑀                      (10) 
Also, the average of the variances calculated by Eq. (9) can be determined. With Eq. (11), the 

average deviation of the true objective function values is obtained from the average true objective 
function. 

𝑆𝑆�̂̅�𝑔𝑁𝑁′𝑀𝑀
2 ≔ 1

𝑀𝑀∑ 𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2𝑀𝑀

𝑚𝑚=1                    (11) 
Step 4: Eq. (12) is used to determine the optimal gap of the �̂�𝑥𝑁𝑁𝑚𝑚 solution. When this value 

approaches zero, it indicates convergence to the optimum solution.   
𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚) = �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚) − �̅�𝑣𝑁𝑁𝑀𝑀                              (12) 

The estimated variance of the optimal gap of the related solution obtained by Eq. (11) is 
calculated as follows: 

𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (�̂�𝑥𝑁𝑁𝑚𝑚) = 𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2 + 𝑆𝑆�̅�𝑣𝑁𝑁𝑀𝑀

2                                                (13) 
Also, the average of the optimal gap values is calculated by Eq. (14). This value shows the 

average of the optimal gap values obtained from each parameter set. 
𝑔𝑔𝑔𝑔𝑝𝑝̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ≔

1
𝑀𝑀∑ 𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1                          (14) 
The average of the optimal gap and its variance are used in the calculation of confidence 

interval values. Accordingly, the average of the variances of the optimal gaps is found from:   
𝑆𝑆�̅�𝑔𝑔𝑔𝑔𝑔2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀
𝑚𝑚=1                                                   (15) 

The confidence interval for the average of the optimal gap is calculated [42]. By using this 
equation, it can be seen whether the average gap values are within the confidence interval 
boundaries.  

𝑔𝑔𝑔𝑔𝑝𝑝̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ∓ 𝑡𝑡(𝛼𝛼 2),(𝑀𝑀−1)⁄ (�̅�𝑆𝑔𝑔𝑔𝑔𝑔𝑔
2

√𝑀𝑀 )                (16) 
 
 

(8)

The statistical upper bound for the optimum value of the 
true problem 

The SAA problem’s optimum value is shown by 𝑣𝑣𝑁𝑁𝑚𝑚. Thus, it is possible to determine the 
optimum solution for each m (�̂�𝑥𝑁𝑁𝑚𝑚, … , �̂�𝑥𝑁𝑁𝑀𝑀) and objective function value (𝑣𝑣𝑁𝑁𝑚𝑚, … , 𝑣𝑣𝑁𝑁𝑀𝑀).  

Step 2: The average of the optimal objective function values determined in the first stage (�̅�𝑣𝑁𝑁𝑀𝑀) 
is calculated. This computation is also applied to eight different parameter sets. 

�̅�𝑣𝑁𝑁𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑣𝑣𝑁𝑁𝑚𝑚

𝑀𝑀
𝑚𝑚=1                                                    (6)      

�̅�𝑣𝑁𝑁𝑀𝑀 is an unbiased estimator for 𝔼𝔼[𝑣𝑣𝑁𝑁] and a statistical lower limit for the optimum value of 
the true problem 𝑣𝑣∗. A variance estimator for �̅�𝑣𝑁𝑁𝑀𝑀 is determined by Eq. (7). With this calculation, the 
average deviation of the objective function values from the average objective function is obtained. 

𝑆𝑆�̅�𝑣𝑁𝑁𝑀𝑀
2 : = 1

𝑀𝑀(𝑀𝑀−1)  ∑ (𝑣𝑣𝑁𝑁𝑚𝑚 − �̅�𝑣𝑁𝑁𝑀𝑀)2𝑀𝑀
𝑚𝑚=1                                              (7) 

Step 3: For each independent random sample with a reference sample size N', the true 
objective function value estimate is determined by resolving the following formulation, using the 
best solutions from step 1. 

�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚): = 𝑐𝑐𝑇𝑇�̂�𝑥𝑁𝑁𝑚𝑚 + 1
𝑁𝑁′∑ 𝑄𝑄(�̂�𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛)𝑁𝑁′

𝑛𝑛=1 ,    𝑚𝑚 = 1,2, … ,𝑀𝑀             (8) 
The statistical upper bound for the optimum value of the true problem 𝑣𝑣∗ is determined by Eq. 

(8) and the variance estimator of this value is calculated as follows: 
𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2 : = 1

𝑁𝑁′(𝑁𝑁′−1)  ∑ [𝑐𝑐𝑇𝑇�̂�𝑥𝑁𝑁𝑚𝑚 + 𝑄𝑄(�̂�𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛) − �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)]2𝑁𝑁′
𝑛𝑛=1 ,  𝑚𝑚 = 1,2, . .𝑀𝑀      (9) 

The average of the upper bound values, determined according to Eq. (8), can be calculated and 
the arithmetic average of the true objective function values (calculated for independent values of m 
for each parameter set) can be observed. 

�̅�𝑔𝑁𝑁′𝑀𝑀 ≔ 1
𝑀𝑀∑ �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1 ,  𝑚𝑚 = 1,2, … ,𝑀𝑀                      (10) 
Also, the average of the variances calculated by Eq. (9) can be determined. With Eq. (11), the 

average deviation of the true objective function values is obtained from the average true objective 
function. 

𝑆𝑆�̂̅�𝑔𝑁𝑁′𝑀𝑀
2 ≔ 1

𝑀𝑀∑ 𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2𝑀𝑀

𝑚𝑚=1                    (11) 
Step 4: Eq. (12) is used to determine the optimal gap of the �̂�𝑥𝑁𝑁𝑚𝑚 solution. When this value 

approaches zero, it indicates convergence to the optimum solution.   
𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚) = �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚) − �̅�𝑣𝑁𝑁𝑀𝑀                              (12) 

The estimated variance of the optimal gap of the related solution obtained by Eq. (11) is 
calculated as follows: 

𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (�̂�𝑥𝑁𝑁𝑚𝑚) = 𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2 + 𝑆𝑆�̅�𝑣𝑁𝑁𝑀𝑀

2                                                (13) 
Also, the average of the optimal gap values is calculated by Eq. (14). This value shows the 

average of the optimal gap values obtained from each parameter set. 
𝑔𝑔𝑔𝑔𝑝𝑝̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ≔

1
𝑀𝑀∑ 𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1                          (14) 
The average of the optimal gap and its variance are used in the calculation of confidence 

interval values. Accordingly, the average of the variances of the optimal gaps is found from:   
𝑆𝑆�̅�𝑔𝑔𝑔𝑔𝑔2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀
𝑚𝑚=1                                                   (15) 

The confidence interval for the average of the optimal gap is calculated [42]. By using this 
equation, it can be seen whether the average gap values are within the confidence interval 
boundaries.  

𝑔𝑔𝑔𝑔𝑝𝑝̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ∓ 𝑡𝑡(𝛼𝛼 2),(𝑀𝑀−1)⁄ (�̅�𝑆𝑔𝑔𝑔𝑔𝑔𝑔
2

√𝑀𝑀 )                (16) 
 
 

* is determined by Eq. (8) and the variance 
estimator of this value is calculated as follows:

The SAA problem’s optimum value is shown by 𝑣𝑣𝑁𝑁𝑚𝑚. Thus, it is possible to determine the 
optimum solution for each m (�̂�𝑥𝑁𝑁𝑚𝑚, … , �̂�𝑥𝑁𝑁𝑀𝑀) and objective function value (𝑣𝑣𝑁𝑁𝑚𝑚, … , 𝑣𝑣𝑁𝑁𝑀𝑀).  

Step 2: The average of the optimal objective function values determined in the first stage (�̅�𝑣𝑁𝑁𝑀𝑀) 
is calculated. This computation is also applied to eight different parameter sets. 

�̅�𝑣𝑁𝑁𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑣𝑣𝑁𝑁𝑚𝑚

𝑀𝑀
𝑚𝑚=1                                                    (6)      

�̅�𝑣𝑁𝑁𝑀𝑀 is an unbiased estimator for 𝔼𝔼[𝑣𝑣𝑁𝑁] and a statistical lower limit for the optimum value of 
the true problem 𝑣𝑣∗. A variance estimator for �̅�𝑣𝑁𝑁𝑀𝑀 is determined by Eq. (7). With this calculation, the 
average deviation of the objective function values from the average objective function is obtained. 

𝑆𝑆�̅�𝑣𝑁𝑁𝑀𝑀
2 : = 1

𝑀𝑀(𝑀𝑀−1)  ∑ (𝑣𝑣𝑁𝑁𝑚𝑚 − �̅�𝑣𝑁𝑁𝑀𝑀)2𝑀𝑀
𝑚𝑚=1                                              (7) 

Step 3: For each independent random sample with a reference sample size N', the true 
objective function value estimate is determined by resolving the following formulation, using the 
best solutions from step 1. 

�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚): = 𝑐𝑐𝑇𝑇�̂�𝑥𝑁𝑁𝑚𝑚 + 1
𝑁𝑁′∑ 𝑄𝑄(�̂�𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛)𝑁𝑁′

𝑛𝑛=1 ,    𝑚𝑚 = 1,2, … ,𝑀𝑀             (8) 
The statistical upper bound for the optimum value of the true problem 𝑣𝑣∗ is determined by Eq. 

(8) and the variance estimator of this value is calculated as follows: 
𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2 : = 1

𝑁𝑁′(𝑁𝑁′−1)  ∑ [𝑐𝑐𝑇𝑇�̂�𝑥𝑁𝑁𝑚𝑚 + 𝑄𝑄(�̂�𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛) − �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)]2𝑁𝑁′
𝑛𝑛=1 ,  𝑚𝑚 = 1,2, . .𝑀𝑀      (9) 

The average of the upper bound values, determined according to Eq. (8), can be calculated and 
the arithmetic average of the true objective function values (calculated for independent values of m 
for each parameter set) can be observed. 

�̅�𝑔𝑁𝑁′𝑀𝑀 ≔ 1
𝑀𝑀∑ �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1 ,  𝑚𝑚 = 1,2, … ,𝑀𝑀                      (10) 
Also, the average of the variances calculated by Eq. (9) can be determined. With Eq. (11), the 

average deviation of the true objective function values is obtained from the average true objective 
function. 

𝑆𝑆�̂̅�𝑔𝑁𝑁′𝑀𝑀
2 ≔ 1

𝑀𝑀∑ 𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2𝑀𝑀

𝑚𝑚=1                    (11) 
Step 4: Eq. (12) is used to determine the optimal gap of the �̂�𝑥𝑁𝑁𝑚𝑚 solution. When this value 

approaches zero, it indicates convergence to the optimum solution.   
𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚) = �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚) − �̅�𝑣𝑁𝑁𝑀𝑀                              (12) 

The estimated variance of the optimal gap of the related solution obtained by Eq. (11) is 
calculated as follows: 

𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (�̂�𝑥𝑁𝑁𝑚𝑚) = 𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2 + 𝑆𝑆�̅�𝑣𝑁𝑁𝑀𝑀

2                                                (13) 
Also, the average of the optimal gap values is calculated by Eq. (14). This value shows the 

average of the optimal gap values obtained from each parameter set. 
𝑔𝑔𝑔𝑔𝑝𝑝̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ≔

1
𝑀𝑀∑ 𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1                          (14) 
The average of the optimal gap and its variance are used in the calculation of confidence 

interval values. Accordingly, the average of the variances of the optimal gaps is found from:   
𝑆𝑆�̅�𝑔𝑔𝑔𝑔𝑔2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀
𝑚𝑚=1                                                   (15) 

The confidence interval for the average of the optimal gap is calculated [42]. By using this 
equation, it can be seen whether the average gap values are within the confidence interval 
boundaries.  

𝑔𝑔𝑔𝑔𝑝𝑝̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ∓ 𝑡𝑡(𝛼𝛼 2),(𝑀𝑀−1)⁄ (�̅�𝑆𝑔𝑔𝑔𝑔𝑔𝑔
2

√𝑀𝑀 )                (16) 
 
 

(9)

The average of the upper bound values, determined 
according to Eq. (8), can be calculated and the arithmetic 
average of the true objective function values (calculated 
for independent values of m for each parameter set) can be 
observed.

The SAA problem’s optimum value is shown by 𝑣𝑣𝑁𝑁𝑚𝑚. Thus, it is possible to determine the 
optimum solution for each m (�̂�𝑥𝑁𝑁𝑚𝑚, … , �̂�𝑥𝑁𝑁𝑀𝑀) and objective function value (𝑣𝑣𝑁𝑁𝑚𝑚, … , 𝑣𝑣𝑁𝑁𝑀𝑀).  

Step 2: The average of the optimal objective function values determined in the first stage (�̅�𝑣𝑁𝑁𝑀𝑀) 
is calculated. This computation is also applied to eight different parameter sets. 

�̅�𝑣𝑁𝑁𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑣𝑣𝑁𝑁𝑚𝑚

𝑀𝑀
𝑚𝑚=1                                                    (6)      

�̅�𝑣𝑁𝑁𝑀𝑀 is an unbiased estimator for 𝔼𝔼[𝑣𝑣𝑁𝑁] and a statistical lower limit for the optimum value of 
the true problem 𝑣𝑣∗. A variance estimator for �̅�𝑣𝑁𝑁𝑀𝑀 is determined by Eq. (7). With this calculation, the 
average deviation of the objective function values from the average objective function is obtained. 

𝑆𝑆�̅�𝑣𝑁𝑁𝑀𝑀
2 : = 1

𝑀𝑀(𝑀𝑀−1)  ∑ (𝑣𝑣𝑁𝑁𝑚𝑚 − �̅�𝑣𝑁𝑁𝑀𝑀)2𝑀𝑀
𝑚𝑚=1                                              (7) 

Step 3: For each independent random sample with a reference sample size N', the true 
objective function value estimate is determined by resolving the following formulation, using the 
best solutions from step 1. 

�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚): = 𝑐𝑐𝑇𝑇�̂�𝑥𝑁𝑁𝑚𝑚 + 1
𝑁𝑁′∑ 𝑄𝑄(�̂�𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛)𝑁𝑁′

𝑛𝑛=1 ,    𝑚𝑚 = 1,2, … ,𝑀𝑀             (8) 
The statistical upper bound for the optimum value of the true problem 𝑣𝑣∗ is determined by Eq. 

(8) and the variance estimator of this value is calculated as follows: 
𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2 : = 1

𝑁𝑁′(𝑁𝑁′−1)  ∑ [𝑐𝑐𝑇𝑇�̂�𝑥𝑁𝑁𝑚𝑚 + 𝑄𝑄(�̂�𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛) − �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)]2𝑁𝑁′
𝑛𝑛=1 ,  𝑚𝑚 = 1,2, . .𝑀𝑀      (9) 

The average of the upper bound values, determined according to Eq. (8), can be calculated and 
the arithmetic average of the true objective function values (calculated for independent values of m 
for each parameter set) can be observed. 

�̅�𝑔𝑁𝑁′𝑀𝑀 ≔ 1
𝑀𝑀∑ �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1 ,  𝑚𝑚 = 1,2, … ,𝑀𝑀                      (10) 
Also, the average of the variances calculated by Eq. (9) can be determined. With Eq. (11), the 

average deviation of the true objective function values is obtained from the average true objective 
function. 

𝑆𝑆�̂̅�𝑔𝑁𝑁′𝑀𝑀
2 ≔ 1

𝑀𝑀∑ 𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2𝑀𝑀

𝑚𝑚=1                    (11) 
Step 4: Eq. (12) is used to determine the optimal gap of the �̂�𝑥𝑁𝑁𝑚𝑚 solution. When this value 

approaches zero, it indicates convergence to the optimum solution.   
𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚) = �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚) − �̅�𝑣𝑁𝑁𝑀𝑀                              (12) 

The estimated variance of the optimal gap of the related solution obtained by Eq. (11) is 
calculated as follows: 

𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (�̂�𝑥𝑁𝑁𝑚𝑚) = 𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2 + 𝑆𝑆�̅�𝑣𝑁𝑁𝑀𝑀

2                                                (13) 
Also, the average of the optimal gap values is calculated by Eq. (14). This value shows the 

average of the optimal gap values obtained from each parameter set. 
𝑔𝑔𝑔𝑔𝑝𝑝̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ≔

1
𝑀𝑀∑ 𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1                          (14) 
The average of the optimal gap and its variance are used in the calculation of confidence 

interval values. Accordingly, the average of the variances of the optimal gaps is found from:   
𝑆𝑆�̅�𝑔𝑔𝑔𝑔𝑔2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀
𝑚𝑚=1                                                   (15) 

The confidence interval for the average of the optimal gap is calculated [42]. By using this 
equation, it can be seen whether the average gap values are within the confidence interval 
boundaries.  

𝑔𝑔𝑔𝑔𝑝𝑝̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ∓ 𝑡𝑡(𝛼𝛼 2),(𝑀𝑀−1)⁄ (�̅�𝑆𝑔𝑔𝑔𝑔𝑔𝑔
2

√𝑀𝑀 )                (16) 
 
 

(10)

Also, the average of the variances calculated by Eq. (9) can 
be determined. With Eq. (11), the average deviation of the 
true objective function values is obtained from the average 
true objective function.

The SAA problem’s optimum value is shown by 𝑣𝑣𝑁𝑁𝑚𝑚. Thus, it is possible to determine the 
optimum solution for each m (�̂�𝑥𝑁𝑁𝑚𝑚, … , �̂�𝑥𝑁𝑁𝑀𝑀) and objective function value (𝑣𝑣𝑁𝑁𝑚𝑚, … , 𝑣𝑣𝑁𝑁𝑀𝑀).  

Step 2: The average of the optimal objective function values determined in the first stage (�̅�𝑣𝑁𝑁𝑀𝑀) 
is calculated. This computation is also applied to eight different parameter sets. 

�̅�𝑣𝑁𝑁𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑣𝑣𝑁𝑁𝑚𝑚

𝑀𝑀
𝑚𝑚=1                                                    (6)      

�̅�𝑣𝑁𝑁𝑀𝑀 is an unbiased estimator for 𝔼𝔼[𝑣𝑣𝑁𝑁] and a statistical lower limit for the optimum value of 
the true problem 𝑣𝑣∗. A variance estimator for �̅�𝑣𝑁𝑁𝑀𝑀 is determined by Eq. (7). With this calculation, the 
average deviation of the objective function values from the average objective function is obtained. 

𝑆𝑆�̅�𝑣𝑁𝑁𝑀𝑀
2 : = 1

𝑀𝑀(𝑀𝑀−1)  ∑ (𝑣𝑣𝑁𝑁𝑚𝑚 − �̅�𝑣𝑁𝑁𝑀𝑀)2𝑀𝑀
𝑚𝑚=1                                              (7) 

Step 3: For each independent random sample with a reference sample size N', the true 
objective function value estimate is determined by resolving the following formulation, using the 
best solutions from step 1. 

�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚): = 𝑐𝑐𝑇𝑇�̂�𝑥𝑁𝑁𝑚𝑚 + 1
𝑁𝑁′∑ 𝑄𝑄(�̂�𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛)𝑁𝑁′

𝑛𝑛=1 ,    𝑚𝑚 = 1,2, … ,𝑀𝑀             (8) 
The statistical upper bound for the optimum value of the true problem 𝑣𝑣∗ is determined by Eq. 

(8) and the variance estimator of this value is calculated as follows: 
𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2 : = 1

𝑁𝑁′(𝑁𝑁′−1)  ∑ [𝑐𝑐𝑇𝑇�̂�𝑥𝑁𝑁𝑚𝑚 + 𝑄𝑄(�̂�𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛) − �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)]2𝑁𝑁′
𝑛𝑛=1 ,  𝑚𝑚 = 1,2, . .𝑀𝑀      (9) 

The average of the upper bound values, determined according to Eq. (8), can be calculated and 
the arithmetic average of the true objective function values (calculated for independent values of m 
for each parameter set) can be observed. 

�̅�𝑔𝑁𝑁′𝑀𝑀 ≔ 1
𝑀𝑀∑ �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1 ,  𝑚𝑚 = 1,2, … ,𝑀𝑀                      (10) 
Also, the average of the variances calculated by Eq. (9) can be determined. With Eq. (11), the 

average deviation of the true objective function values is obtained from the average true objective 
function. 

𝑆𝑆�̂̅�𝑔𝑁𝑁′𝑀𝑀
2 ≔ 1

𝑀𝑀∑ 𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2𝑀𝑀

𝑚𝑚=1                    (11) 
Step 4: Eq. (12) is used to determine the optimal gap of the �̂�𝑥𝑁𝑁𝑚𝑚 solution. When this value 

approaches zero, it indicates convergence to the optimum solution.   
𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚) = �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚) − �̅�𝑣𝑁𝑁𝑀𝑀                              (12) 

The estimated variance of the optimal gap of the related solution obtained by Eq. (11) is 
calculated as follows: 

𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (�̂�𝑥𝑁𝑁𝑚𝑚) = 𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2 + 𝑆𝑆�̅�𝑣𝑁𝑁𝑀𝑀

2                                                (13) 
Also, the average of the optimal gap values is calculated by Eq. (14). This value shows the 

average of the optimal gap values obtained from each parameter set. 
𝑔𝑔𝑔𝑔𝑝𝑝̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ≔

1
𝑀𝑀∑ 𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1                          (14) 
The average of the optimal gap and its variance are used in the calculation of confidence 

interval values. Accordingly, the average of the variances of the optimal gaps is found from:   
𝑆𝑆�̅�𝑔𝑔𝑔𝑔𝑔2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀
𝑚𝑚=1                                                   (15) 

The confidence interval for the average of the optimal gap is calculated [42]. By using this 
equation, it can be seen whether the average gap values are within the confidence interval 
boundaries.  

𝑔𝑔𝑔𝑔𝑝𝑝̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ∓ 𝑡𝑡(𝛼𝛼 2),(𝑀𝑀−1)⁄ (�̅�𝑆𝑔𝑔𝑔𝑔𝑔𝑔
2

√𝑀𝑀 )                (16) 
 
 

(11)

Step 4: Eq. (12) is used to determine the optimal gap of the 

The SAA problem’s optimum value is shown by 𝑣𝑣𝑁𝑁𝑚𝑚. Thus, it is possible to determine the 
optimum solution for each m (�̂�𝑥𝑁𝑁𝑚𝑚, … , �̂�𝑥𝑁𝑁𝑀𝑀) and objective function value (𝑣𝑣𝑁𝑁𝑚𝑚, … , 𝑣𝑣𝑁𝑁𝑀𝑀).  

Step 2: The average of the optimal objective function values determined in the first stage (�̅�𝑣𝑁𝑁𝑀𝑀) 
is calculated. This computation is also applied to eight different parameter sets. 

�̅�𝑣𝑁𝑁𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑣𝑣𝑁𝑁𝑚𝑚

𝑀𝑀
𝑚𝑚=1                                                    (6)      

�̅�𝑣𝑁𝑁𝑀𝑀 is an unbiased estimator for 𝔼𝔼[𝑣𝑣𝑁𝑁] and a statistical lower limit for the optimum value of 
the true problem 𝑣𝑣∗. A variance estimator for �̅�𝑣𝑁𝑁𝑀𝑀 is determined by Eq. (7). With this calculation, the 
average deviation of the objective function values from the average objective function is obtained. 

𝑆𝑆�̅�𝑣𝑁𝑁𝑀𝑀
2 : = 1

𝑀𝑀(𝑀𝑀−1)  ∑ (𝑣𝑣𝑁𝑁𝑚𝑚 − �̅�𝑣𝑁𝑁𝑀𝑀)2𝑀𝑀
𝑚𝑚=1                                              (7) 

Step 3: For each independent random sample with a reference sample size N', the true 
objective function value estimate is determined by resolving the following formulation, using the 
best solutions from step 1. 

�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚): = 𝑐𝑐𝑇𝑇�̂�𝑥𝑁𝑁𝑚𝑚 + 1
𝑁𝑁′∑ 𝑄𝑄(�̂�𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛)𝑁𝑁′

𝑛𝑛=1 ,    𝑚𝑚 = 1,2, … ,𝑀𝑀             (8) 
The statistical upper bound for the optimum value of the true problem 𝑣𝑣∗ is determined by Eq. 

(8) and the variance estimator of this value is calculated as follows: 
𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2 : = 1

𝑁𝑁′(𝑁𝑁′−1)  ∑ [𝑐𝑐𝑇𝑇�̂�𝑥𝑁𝑁𝑚𝑚 + 𝑄𝑄(�̂�𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛) − �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)]2𝑁𝑁′
𝑛𝑛=1 ,  𝑚𝑚 = 1,2, . .𝑀𝑀      (9) 

The average of the upper bound values, determined according to Eq. (8), can be calculated and 
the arithmetic average of the true objective function values (calculated for independent values of m 
for each parameter set) can be observed. 

�̅�𝑔𝑁𝑁′𝑀𝑀 ≔ 1
𝑀𝑀∑ �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1 ,  𝑚𝑚 = 1,2, … ,𝑀𝑀                      (10) 
Also, the average of the variances calculated by Eq. (9) can be determined. With Eq. (11), the 

average deviation of the true objective function values is obtained from the average true objective 
function. 

𝑆𝑆�̂̅�𝑔𝑁𝑁′𝑀𝑀
2 ≔ 1

𝑀𝑀∑ 𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2𝑀𝑀

𝑚𝑚=1                    (11) 
Step 4: Eq. (12) is used to determine the optimal gap of the �̂�𝑥𝑁𝑁𝑚𝑚 solution. When this value 

approaches zero, it indicates convergence to the optimum solution.   
𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚) = �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚) − �̅�𝑣𝑁𝑁𝑀𝑀                              (12) 

The estimated variance of the optimal gap of the related solution obtained by Eq. (11) is 
calculated as follows: 

𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (�̂�𝑥𝑁𝑁𝑚𝑚) = 𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2 + 𝑆𝑆�̅�𝑣𝑁𝑁𝑀𝑀

2                                                (13) 
Also, the average of the optimal gap values is calculated by Eq. (14). This value shows the 

average of the optimal gap values obtained from each parameter set. 
𝑔𝑔𝑔𝑔𝑝𝑝̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ≔

1
𝑀𝑀∑ 𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1                          (14) 
The average of the optimal gap and its variance are used in the calculation of confidence 

interval values. Accordingly, the average of the variances of the optimal gaps is found from:   
𝑆𝑆�̅�𝑔𝑔𝑔𝑔𝑔2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀
𝑚𝑚=1                                                   (15) 

The confidence interval for the average of the optimal gap is calculated [42]. By using this 
equation, it can be seen whether the average gap values are within the confidence interval 
boundaries.  

𝑔𝑔𝑔𝑔𝑝𝑝̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ∓ 𝑡𝑡(𝛼𝛼 2),(𝑀𝑀−1)⁄ (�̅�𝑆𝑔𝑔𝑔𝑔𝑔𝑔
2

√𝑀𝑀 )                (16) 
 
 

 solution. When this value approaches zero, it indicates 
convergence to the optimum solution.

The SAA problem’s optimum value is shown by 𝑣𝑣𝑁𝑁𝑚𝑚. Thus, it is possible to determine the 
optimum solution for each m (�̂�𝑥𝑁𝑁𝑚𝑚, … , �̂�𝑥𝑁𝑁𝑀𝑀) and objective function value (𝑣𝑣𝑁𝑁𝑚𝑚, … , 𝑣𝑣𝑁𝑁𝑀𝑀).  

Step 2: The average of the optimal objective function values determined in the first stage (�̅�𝑣𝑁𝑁𝑀𝑀) 
is calculated. This computation is also applied to eight different parameter sets. 

�̅�𝑣𝑁𝑁𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑣𝑣𝑁𝑁𝑚𝑚

𝑀𝑀
𝑚𝑚=1                                                    (6)      

�̅�𝑣𝑁𝑁𝑀𝑀 is an unbiased estimator for 𝔼𝔼[𝑣𝑣𝑁𝑁] and a statistical lower limit for the optimum value of 
the true problem 𝑣𝑣∗. A variance estimator for �̅�𝑣𝑁𝑁𝑀𝑀 is determined by Eq. (7). With this calculation, the 
average deviation of the objective function values from the average objective function is obtained. 

𝑆𝑆�̅�𝑣𝑁𝑁𝑀𝑀
2 : = 1

𝑀𝑀(𝑀𝑀−1)  ∑ (𝑣𝑣𝑁𝑁𝑚𝑚 − �̅�𝑣𝑁𝑁𝑀𝑀)2𝑀𝑀
𝑚𝑚=1                                              (7) 

Step 3: For each independent random sample with a reference sample size N', the true 
objective function value estimate is determined by resolving the following formulation, using the 
best solutions from step 1. 

�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚): = 𝑐𝑐𝑇𝑇�̂�𝑥𝑁𝑁𝑚𝑚 + 1
𝑁𝑁′∑ 𝑄𝑄(�̂�𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛)𝑁𝑁′

𝑛𝑛=1 ,    𝑚𝑚 = 1,2, … ,𝑀𝑀             (8) 
The statistical upper bound for the optimum value of the true problem 𝑣𝑣∗ is determined by Eq. 

(8) and the variance estimator of this value is calculated as follows: 
𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2 : = 1

𝑁𝑁′(𝑁𝑁′−1)  ∑ [𝑐𝑐𝑇𝑇�̂�𝑥𝑁𝑁𝑚𝑚 + 𝑄𝑄(�̂�𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛) − �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)]2𝑁𝑁′
𝑛𝑛=1 ,  𝑚𝑚 = 1,2, . .𝑀𝑀      (9) 

The average of the upper bound values, determined according to Eq. (8), can be calculated and 
the arithmetic average of the true objective function values (calculated for independent values of m 
for each parameter set) can be observed. 

�̅�𝑔𝑁𝑁′𝑀𝑀 ≔ 1
𝑀𝑀∑ �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1 ,  𝑚𝑚 = 1,2, … ,𝑀𝑀                      (10) 
Also, the average of the variances calculated by Eq. (9) can be determined. With Eq. (11), the 

average deviation of the true objective function values is obtained from the average true objective 
function. 

𝑆𝑆�̂̅�𝑔𝑁𝑁′𝑀𝑀
2 ≔ 1

𝑀𝑀∑ 𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2𝑀𝑀

𝑚𝑚=1                    (11) 
Step 4: Eq. (12) is used to determine the optimal gap of the �̂�𝑥𝑁𝑁𝑚𝑚 solution. When this value 

approaches zero, it indicates convergence to the optimum solution.   
𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚) = �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚) − �̅�𝑣𝑁𝑁𝑀𝑀                              (12) 

The estimated variance of the optimal gap of the related solution obtained by Eq. (11) is 
calculated as follows: 

𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (�̂�𝑥𝑁𝑁𝑚𝑚) = 𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2 + 𝑆𝑆�̅�𝑣𝑁𝑁𝑀𝑀

2                                                (13) 
Also, the average of the optimal gap values is calculated by Eq. (14). This value shows the 

average of the optimal gap values obtained from each parameter set. 
𝑔𝑔𝑔𝑔𝑝𝑝̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ≔

1
𝑀𝑀∑ 𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1                          (14) 
The average of the optimal gap and its variance are used in the calculation of confidence 

interval values. Accordingly, the average of the variances of the optimal gaps is found from:   
𝑆𝑆�̅�𝑔𝑔𝑔𝑔𝑔2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀
𝑚𝑚=1                                                   (15) 

The confidence interval for the average of the optimal gap is calculated [42]. By using this 
equation, it can be seen whether the average gap values are within the confidence interval 
boundaries.  

𝑔𝑔𝑔𝑔𝑝𝑝̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ∓ 𝑡𝑡(𝛼𝛼 2),(𝑀𝑀−1)⁄ (�̅�𝑆𝑔𝑔𝑔𝑔𝑔𝑔
2

√𝑀𝑀 )                (16) 
 
 

(12)

The estimated variance of the optimal gap of the related 
solution obtained by Eq. (11) is calculated as follows:

The SAA problem’s optimum value is shown by 𝑣𝑣𝑁𝑁𝑚𝑚. Thus, it is possible to determine the 
optimum solution for each m (�̂�𝑥𝑁𝑁𝑚𝑚, … , �̂�𝑥𝑁𝑁𝑀𝑀) and objective function value (𝑣𝑣𝑁𝑁𝑚𝑚, … , 𝑣𝑣𝑁𝑁𝑀𝑀).  

Step 2: The average of the optimal objective function values determined in the first stage (�̅�𝑣𝑁𝑁𝑀𝑀) 
is calculated. This computation is also applied to eight different parameter sets. 

�̅�𝑣𝑁𝑁𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑣𝑣𝑁𝑁𝑚𝑚

𝑀𝑀
𝑚𝑚=1                                                    (6)      

�̅�𝑣𝑁𝑁𝑀𝑀 is an unbiased estimator for 𝔼𝔼[𝑣𝑣𝑁𝑁] and a statistical lower limit for the optimum value of 
the true problem 𝑣𝑣∗. A variance estimator for �̅�𝑣𝑁𝑁𝑀𝑀 is determined by Eq. (7). With this calculation, the 
average deviation of the objective function values from the average objective function is obtained. 

𝑆𝑆�̅�𝑣𝑁𝑁𝑀𝑀
2 : = 1

𝑀𝑀(𝑀𝑀−1)  ∑ (𝑣𝑣𝑁𝑁𝑚𝑚 − �̅�𝑣𝑁𝑁𝑀𝑀)2𝑀𝑀
𝑚𝑚=1                                              (7) 

Step 3: For each independent random sample with a reference sample size N', the true 
objective function value estimate is determined by resolving the following formulation, using the 
best solutions from step 1. 

�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚): = 𝑐𝑐𝑇𝑇�̂�𝑥𝑁𝑁𝑚𝑚 + 1
𝑁𝑁′∑ 𝑄𝑄(�̂�𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛)𝑁𝑁′

𝑛𝑛=1 ,    𝑚𝑚 = 1,2, … ,𝑀𝑀             (8) 
The statistical upper bound for the optimum value of the true problem 𝑣𝑣∗ is determined by Eq. 

(8) and the variance estimator of this value is calculated as follows: 
𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2 : = 1

𝑁𝑁′(𝑁𝑁′−1)  ∑ [𝑐𝑐𝑇𝑇�̂�𝑥𝑁𝑁𝑚𝑚 + 𝑄𝑄(�̂�𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛) − �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)]2𝑁𝑁′
𝑛𝑛=1 ,  𝑚𝑚 = 1,2, . .𝑀𝑀      (9) 

The average of the upper bound values, determined according to Eq. (8), can be calculated and 
the arithmetic average of the true objective function values (calculated for independent values of m 
for each parameter set) can be observed. 

�̅�𝑔𝑁𝑁′𝑀𝑀 ≔ 1
𝑀𝑀∑ �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1 ,  𝑚𝑚 = 1,2, … ,𝑀𝑀                      (10) 
Also, the average of the variances calculated by Eq. (9) can be determined. With Eq. (11), the 

average deviation of the true objective function values is obtained from the average true objective 
function. 

𝑆𝑆�̂̅�𝑔𝑁𝑁′𝑀𝑀
2 ≔ 1

𝑀𝑀∑ 𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2𝑀𝑀

𝑚𝑚=1                    (11) 
Step 4: Eq. (12) is used to determine the optimal gap of the �̂�𝑥𝑁𝑁𝑚𝑚 solution. When this value 

approaches zero, it indicates convergence to the optimum solution.   
𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚) = �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚) − �̅�𝑣𝑁𝑁𝑀𝑀                              (12) 

The estimated variance of the optimal gap of the related solution obtained by Eq. (11) is 
calculated as follows: 

𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (�̂�𝑥𝑁𝑁𝑚𝑚) = 𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2 + 𝑆𝑆�̅�𝑣𝑁𝑁𝑀𝑀

2                                                (13) 
Also, the average of the optimal gap values is calculated by Eq. (14). This value shows the 

average of the optimal gap values obtained from each parameter set. 
𝑔𝑔𝑔𝑔𝑝𝑝̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ≔

1
𝑀𝑀∑ 𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1                          (14) 
The average of the optimal gap and its variance are used in the calculation of confidence 

interval values. Accordingly, the average of the variances of the optimal gaps is found from:   
𝑆𝑆�̅�𝑔𝑔𝑔𝑔𝑔2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀
𝑚𝑚=1                                                   (15) 

The confidence interval for the average of the optimal gap is calculated [42]. By using this 
equation, it can be seen whether the average gap values are within the confidence interval 
boundaries.  

𝑔𝑔𝑔𝑔𝑝𝑝̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ∓ 𝑡𝑡(𝛼𝛼 2),(𝑀𝑀−1)⁄ (�̅�𝑆𝑔𝑔𝑔𝑔𝑔𝑔
2
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(13)

Also, the average of the optimal gap values is calculated 
by Eq. (14). This value shows the average of the optimal gap 
values obtained from each parameter set.

The SAA problem’s optimum value is shown by 𝑣𝑣𝑁𝑁𝑚𝑚. Thus, it is possible to determine the 
optimum solution for each m (�̂�𝑥𝑁𝑁𝑚𝑚, … , �̂�𝑥𝑁𝑁𝑀𝑀) and objective function value (𝑣𝑣𝑁𝑁𝑚𝑚, … , 𝑣𝑣𝑁𝑁𝑀𝑀).  

Step 2: The average of the optimal objective function values determined in the first stage (�̅�𝑣𝑁𝑁𝑀𝑀) 
is calculated. This computation is also applied to eight different parameter sets. 

�̅�𝑣𝑁𝑁𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑣𝑣𝑁𝑁𝑚𝑚

𝑀𝑀
𝑚𝑚=1                                                    (6)      

�̅�𝑣𝑁𝑁𝑀𝑀 is an unbiased estimator for 𝔼𝔼[𝑣𝑣𝑁𝑁] and a statistical lower limit for the optimum value of 
the true problem 𝑣𝑣∗. A variance estimator for �̅�𝑣𝑁𝑁𝑀𝑀 is determined by Eq. (7). With this calculation, the 
average deviation of the objective function values from the average objective function is obtained. 

𝑆𝑆�̅�𝑣𝑁𝑁𝑀𝑀
2 : = 1

𝑀𝑀(𝑀𝑀−1)  ∑ (𝑣𝑣𝑁𝑁𝑚𝑚 − �̅�𝑣𝑁𝑁𝑀𝑀)2𝑀𝑀
𝑚𝑚=1                                              (7) 

Step 3: For each independent random sample with a reference sample size N', the true 
objective function value estimate is determined by resolving the following formulation, using the 
best solutions from step 1. 

�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚): = 𝑐𝑐𝑇𝑇�̂�𝑥𝑁𝑁𝑚𝑚 + 1
𝑁𝑁′∑ 𝑄𝑄(�̂�𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛)𝑁𝑁′

𝑛𝑛=1 ,    𝑚𝑚 = 1,2, … ,𝑀𝑀             (8) 
The statistical upper bound for the optimum value of the true problem 𝑣𝑣∗ is determined by Eq. 

(8) and the variance estimator of this value is calculated as follows: 
𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2 : = 1

𝑁𝑁′(𝑁𝑁′−1)  ∑ [𝑐𝑐𝑇𝑇�̂�𝑥𝑁𝑁𝑚𝑚 + 𝑄𝑄(�̂�𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛) − �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)]2𝑁𝑁′
𝑛𝑛=1 ,  𝑚𝑚 = 1,2, . .𝑀𝑀      (9) 

The average of the upper bound values, determined according to Eq. (8), can be calculated and 
the arithmetic average of the true objective function values (calculated for independent values of m 
for each parameter set) can be observed. 

�̅�𝑔𝑁𝑁′𝑀𝑀 ≔ 1
𝑀𝑀∑ �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1 ,  𝑚𝑚 = 1,2, … ,𝑀𝑀                      (10) 
Also, the average of the variances calculated by Eq. (9) can be determined. With Eq. (11), the 

average deviation of the true objective function values is obtained from the average true objective 
function. 

𝑆𝑆�̂̅�𝑔𝑁𝑁′𝑀𝑀
2 ≔ 1

𝑀𝑀∑ 𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2𝑀𝑀

𝑚𝑚=1                    (11) 
Step 4: Eq. (12) is used to determine the optimal gap of the �̂�𝑥𝑁𝑁𝑚𝑚 solution. When this value 

approaches zero, it indicates convergence to the optimum solution.   
𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚) = �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚) − �̅�𝑣𝑁𝑁𝑀𝑀                              (12) 

The estimated variance of the optimal gap of the related solution obtained by Eq. (11) is 
calculated as follows: 

𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (�̂�𝑥𝑁𝑁𝑚𝑚) = 𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2 + 𝑆𝑆�̅�𝑣𝑁𝑁𝑀𝑀

2                                                (13) 
Also, the average of the optimal gap values is calculated by Eq. (14). This value shows the 

average of the optimal gap values obtained from each parameter set. 
𝑔𝑔𝑔𝑔𝑝𝑝̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ≔

1
𝑀𝑀∑ 𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1                          (14) 
The average of the optimal gap and its variance are used in the calculation of confidence 

interval values. Accordingly, the average of the variances of the optimal gaps is found from:   
𝑆𝑆�̅�𝑔𝑔𝑔𝑔𝑔2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀
𝑚𝑚=1                                                   (15) 

The confidence interval for the average of the optimal gap is calculated [42]. By using this 
equation, it can be seen whether the average gap values are within the confidence interval 
boundaries.  

𝑔𝑔𝑔𝑔𝑝𝑝̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ∓ 𝑡𝑡(𝛼𝛼 2),(𝑀𝑀−1)⁄ (�̅�𝑆𝑔𝑔𝑔𝑔𝑔𝑔
2

√𝑀𝑀 )                (16) 
 
 

(14)

The average of the optimal gap and its variance are used in 
the calculation of confidence interval values. Accordingly, the 
average of the variances of the optimal gaps is found from:  

The SAA problem’s optimum value is shown by 𝑣𝑣𝑁𝑁𝑚𝑚. Thus, it is possible to determine the 
optimum solution for each m (�̂�𝑥𝑁𝑁𝑚𝑚, … , �̂�𝑥𝑁𝑁𝑀𝑀) and objective function value (𝑣𝑣𝑁𝑁𝑚𝑚, … , 𝑣𝑣𝑁𝑁𝑀𝑀).  

Step 2: The average of the optimal objective function values determined in the first stage (�̅�𝑣𝑁𝑁𝑀𝑀) 
is calculated. This computation is also applied to eight different parameter sets. 

�̅�𝑣𝑁𝑁𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑣𝑣𝑁𝑁𝑚𝑚

𝑀𝑀
𝑚𝑚=1                                                    (6)      

�̅�𝑣𝑁𝑁𝑀𝑀 is an unbiased estimator for 𝔼𝔼[𝑣𝑣𝑁𝑁] and a statistical lower limit for the optimum value of 
the true problem 𝑣𝑣∗. A variance estimator for �̅�𝑣𝑁𝑁𝑀𝑀 is determined by Eq. (7). With this calculation, the 
average deviation of the objective function values from the average objective function is obtained. 

𝑆𝑆�̅�𝑣𝑁𝑁𝑀𝑀
2 : = 1

𝑀𝑀(𝑀𝑀−1)  ∑ (𝑣𝑣𝑁𝑁𝑚𝑚 − �̅�𝑣𝑁𝑁𝑀𝑀)2𝑀𝑀
𝑚𝑚=1                                              (7) 

Step 3: For each independent random sample with a reference sample size N', the true 
objective function value estimate is determined by resolving the following formulation, using the 
best solutions from step 1. 

�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚): = 𝑐𝑐𝑇𝑇�̂�𝑥𝑁𝑁𝑚𝑚 + 1
𝑁𝑁′∑ 𝑄𝑄(�̂�𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛)𝑁𝑁′

𝑛𝑛=1 ,    𝑚𝑚 = 1,2, … ,𝑀𝑀             (8) 
The statistical upper bound for the optimum value of the true problem 𝑣𝑣∗ is determined by Eq. 

(8) and the variance estimator of this value is calculated as follows: 
𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2 : = 1

𝑁𝑁′(𝑁𝑁′−1)  ∑ [𝑐𝑐𝑇𝑇�̂�𝑥𝑁𝑁𝑚𝑚 + 𝑄𝑄(�̂�𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛) − �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)]2𝑁𝑁′
𝑛𝑛=1 ,  𝑚𝑚 = 1,2, . .𝑀𝑀      (9) 

The average of the upper bound values, determined according to Eq. (8), can be calculated and 
the arithmetic average of the true objective function values (calculated for independent values of m 
for each parameter set) can be observed. 

�̅�𝑔𝑁𝑁′𝑀𝑀 ≔ 1
𝑀𝑀∑ �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1 ,  𝑚𝑚 = 1,2, … ,𝑀𝑀                      (10) 
Also, the average of the variances calculated by Eq. (9) can be determined. With Eq. (11), the 

average deviation of the true objective function values is obtained from the average true objective 
function. 

𝑆𝑆�̂̅�𝑔𝑁𝑁′𝑀𝑀
2 ≔ 1

𝑀𝑀∑ 𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2𝑀𝑀

𝑚𝑚=1                    (11) 
Step 4: Eq. (12) is used to determine the optimal gap of the �̂�𝑥𝑁𝑁𝑚𝑚 solution. When this value 

approaches zero, it indicates convergence to the optimum solution.   
𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚) = �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚) − �̅�𝑣𝑁𝑁𝑀𝑀                              (12) 

The estimated variance of the optimal gap of the related solution obtained by Eq. (11) is 
calculated as follows: 

𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (�̂�𝑥𝑁𝑁𝑚𝑚) = 𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2 + 𝑆𝑆�̅�𝑣𝑁𝑁𝑀𝑀

2                                                (13) 
Also, the average of the optimal gap values is calculated by Eq. (14). This value shows the 

average of the optimal gap values obtained from each parameter set. 
𝑔𝑔𝑔𝑔𝑝𝑝̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ≔

1
𝑀𝑀∑ 𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1                          (14) 
The average of the optimal gap and its variance are used in the calculation of confidence 

interval values. Accordingly, the average of the variances of the optimal gaps is found from:   
𝑆𝑆�̅�𝑔𝑔𝑔𝑔𝑔2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀
𝑚𝑚=1                                                   (15) 

The confidence interval for the average of the optimal gap is calculated [42]. By using this 
equation, it can be seen whether the average gap values are within the confidence interval 
boundaries.  

𝑔𝑔𝑔𝑔𝑝𝑝̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ∓ 𝑡𝑡(𝛼𝛼 2),(𝑀𝑀−1)⁄ (�̅�𝑆𝑔𝑔𝑔𝑔𝑔𝑔
2

√𝑀𝑀 )                (16) 
 
 

(15)

The confidence interval for the average of the optimal 
gap is calculated [42]. By using this equation, it can be seen 
whether the average gap values are within the confidence 
interval boundaries. 

The SAA problem’s optimum value is shown by 𝑣𝑣𝑁𝑁𝑚𝑚. Thus, it is possible to determine the 
optimum solution for each m (�̂�𝑥𝑁𝑁𝑚𝑚, … , �̂�𝑥𝑁𝑁𝑀𝑀) and objective function value (𝑣𝑣𝑁𝑁𝑚𝑚, … , 𝑣𝑣𝑁𝑁𝑀𝑀).  

Step 2: The average of the optimal objective function values determined in the first stage (�̅�𝑣𝑁𝑁𝑀𝑀) 
is calculated. This computation is also applied to eight different parameter sets. 

�̅�𝑣𝑁𝑁𝑀𝑀 ≔ 1
𝑀𝑀∑ 𝑣𝑣𝑁𝑁𝑚𝑚

𝑀𝑀
𝑚𝑚=1                                                    (6)      

�̅�𝑣𝑁𝑁𝑀𝑀 is an unbiased estimator for 𝔼𝔼[𝑣𝑣𝑁𝑁] and a statistical lower limit for the optimum value of 
the true problem 𝑣𝑣∗. A variance estimator for �̅�𝑣𝑁𝑁𝑀𝑀 is determined by Eq. (7). With this calculation, the 
average deviation of the objective function values from the average objective function is obtained. 

𝑆𝑆�̅�𝑣𝑁𝑁𝑀𝑀
2 : = 1

𝑀𝑀(𝑀𝑀−1)  ∑ (𝑣𝑣𝑁𝑁𝑚𝑚 − �̅�𝑣𝑁𝑁𝑀𝑀)2𝑀𝑀
𝑚𝑚=1                                              (7) 

Step 3: For each independent random sample with a reference sample size N', the true 
objective function value estimate is determined by resolving the following formulation, using the 
best solutions from step 1. 

�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚): = 𝑐𝑐𝑇𝑇�̂�𝑥𝑁𝑁𝑚𝑚 + 1
𝑁𝑁′∑ 𝑄𝑄(�̂�𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛)𝑁𝑁′

𝑛𝑛=1 ,    𝑚𝑚 = 1,2, … ,𝑀𝑀             (8) 
The statistical upper bound for the optimum value of the true problem 𝑣𝑣∗ is determined by Eq. 

(8) and the variance estimator of this value is calculated as follows: 
𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2 : = 1

𝑁𝑁′(𝑁𝑁′−1)  ∑ [𝑐𝑐𝑇𝑇�̂�𝑥𝑁𝑁𝑚𝑚 + 𝑄𝑄(�̂�𝑥𝑁𝑁𝑚𝑚, 𝜉𝜉𝑛𝑛) − �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)]2𝑁𝑁′
𝑛𝑛=1 ,  𝑚𝑚 = 1,2, . .𝑀𝑀      (9) 

The average of the upper bound values, determined according to Eq. (8), can be calculated and 
the arithmetic average of the true objective function values (calculated for independent values of m 
for each parameter set) can be observed. 

�̅�𝑔𝑁𝑁′𝑀𝑀 ≔ 1
𝑀𝑀∑ �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1 ,  𝑚𝑚 = 1,2, … ,𝑀𝑀                      (10) 
Also, the average of the variances calculated by Eq. (9) can be determined. With Eq. (11), the 

average deviation of the true objective function values is obtained from the average true objective 
function. 

𝑆𝑆�̂̅�𝑔𝑁𝑁′𝑀𝑀
2 ≔ 1

𝑀𝑀∑ 𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2𝑀𝑀

𝑚𝑚=1                    (11) 
Step 4: Eq. (12) is used to determine the optimal gap of the �̂�𝑥𝑁𝑁𝑚𝑚 solution. When this value 

approaches zero, it indicates convergence to the optimum solution.   
𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚) = �̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚) − �̅�𝑣𝑁𝑁𝑀𝑀                              (12) 

The estimated variance of the optimal gap of the related solution obtained by Eq. (11) is 
calculated as follows: 

𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (�̂�𝑥𝑁𝑁𝑚𝑚) = 𝑆𝑆�̂�𝑔𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)
2 + 𝑆𝑆�̅�𝑣𝑁𝑁𝑀𝑀

2                                                (13) 
Also, the average of the optimal gap values is calculated by Eq. (14). This value shows the 

average of the optimal gap values obtained from each parameter set. 
𝑔𝑔𝑔𝑔𝑝𝑝̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ≔

1
𝑀𝑀∑ 𝑔𝑔𝑔𝑔𝑝𝑝𝑁𝑁,𝑀𝑀,𝑁𝑁′(�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀

𝑚𝑚=1                          (14) 
The average of the optimal gap and its variance are used in the calculation of confidence 

interval values. Accordingly, the average of the variances of the optimal gaps is found from:   
𝑆𝑆�̅�𝑔𝑔𝑔𝑔𝑔2 ≔ 1

𝑀𝑀∑ 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔2 (�̂�𝑥𝑁𝑁𝑚𝑚)𝑀𝑀
𝑚𝑚=1                                                   (15) 

The confidence interval for the average of the optimal gap is calculated [42]. By using this 
equation, it can be seen whether the average gap values are within the confidence interval 
boundaries.  

𝑔𝑔𝑔𝑔𝑝𝑝̅̅ ̅̅ ̅𝑁𝑁,𝑀𝑀,𝑁𝑁′ ∓ 𝑡𝑡(𝛼𝛼 2),(𝑀𝑀−1)⁄ (�̅�𝑆𝑔𝑔𝑔𝑔𝑔𝑔
2

√𝑀𝑀 )                (16) 
 
 

(16)

CASE STUDY: MAN-DAY PREDICTION FOR PASSENGER 
SHIP DOUBLE BOTTOM BLOCK PRODUCTION

The flow chart of the implementation can be seen in Fig. 2. 
Accordingly, to initiate the process, our first imperative was 
to gather the essential data necessary for our analysis. This 
involved conducting field research, where we observed and 
documented worker performance and activities within the 
production. The next crucial step was the development of 
a mathematical model designed to represent the problem 
we were addressing. This model was crafted in detail, 
incorporating various variables to accurately simulate the 
real-world situation. Additionally, numerous scenarios were 
created and then the model was solved with SAA.

Data collection through 
field observation

Development of the
mathematical model

Scenario creation by Monte 
Carlo sampling

Solving the model with 
SAA 

Is the variance 
and gap 

acceptable?

Provide results

Revise 
parameters

Yes No

Fig. 2. The flow chart of the implementation

In the case study, eight different forms were solved (Table 2). 
N indicates the number of scenarios in the independent 
sample selected from the reference sample, M is the number 
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of independently determined samples, and N' is the total 
number of scenarios in the reference sample, respectively.
Tab. 2. Parameters and values used in the application.

Set No
Parameter set values

1 2 3 4 5 6 7 8

Pa
ra

m
et

er
s N 20 200 20 200 20 200 20 200

M 5 5 10 10 5 5 10 10

N' 2000 2000 2000 2000 10000 10000 10000 10000

Firstly, the amount of work and performance scenarios 
were generated for N' = 2000 and N' = 10000. Ns for each 
different m were obtained by applying the Monte Carlo 
sampling method. However, the scenarios for all forms are 
not shown here, due to space limitations. A portion of the 
amount of work and performance scenarios produced for 
m = 1, N = 20 in set no. 1 is shown in Table 3 and Table 4, as 
examples. The costs are taken as c1 

M = 1080, c1 
W = 540, c1

G  = 540, 
c2 

M  = 1300, c2 
W  = 650, and c2

G  = 650 currency units. 

Tab. 3. Amount of work (labour) scenarios for m=1, N=20 in set no. 1
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1 1382 407 402 455 153 138 367 147 1485 520 519 842 249 243 1768 560 460 1869 560 460

2 1362 406 409 465 151 139 367 147 1484 520 521 812 249 245 1842 556 444 1810 563 462

.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

19 1353 406 404 459 149 138 365 147 1488 520 522 829 246 246 1796 569 449 1799 561 460

20 1379 417 415 454 154 136 368 147 1486 523 522 839 243 244 1833 560 446 1822 580 464

Tab. 4. Performance scenarios for m=1, N=20 in set no. 1
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Tab. 5. The calculated decision variable values for set no. 4
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7 3 2 7 5 15-16 18 6 3 1 1 4 17 22-23 7 4 7 6 27 36

The decision variables and related objective function values 
are calculated by using Eq. (5) and are given in Tables 5 and 6. 
Table 5 presents the 20 different decision variables computed 
for each independent sample in set no 4, where only the 
workforce values observed for dR1

( G,M) and dR1
( K,W) differ 

between 15-16 and 22-23, respectively. The other values are 
identical, e.g. all ten values for dR1

( C,M) = 7; dR1
(D,M) = 3... The 

first column in Table 6 shows the number of independent 
samples. Column 2 shows the objective function values and 
column 3 displays the true objective function value estimation 
calculated by Eq. (8). The variance estimator of these values is 
calculated by Eq. (9) and shown in column 4. The gap values 
calculated by Eq. (12) are presented in column 5 and the gap 
variances calculated by Eq. (13) are in column 6.
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Tab. 6. The calculated values for set no. 4

m

Table 6. The calculated values for set no. 4 
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2  gap variance 

1 150747 150940 5044 46.5 12548 
2 151204 150906 5212 13.2 12716 
3 150502 150906 5212 13.2 12716 
4 150922 150906 5212 13.2 12716 
5 151305 150906 5212 13.2 12716 
6 150955 150907 4947 14.2 12451 
7 150600 150906 5212 13.2 12716 
8 151208 150906 5212 13.2 12716 
9 150723 150906 5212 13.2 12716 
10 150766 150906 5212 13.2 12716 
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There are many factors that cause uncertainties in the shipbuilding process. With stochastic 

programming models, approximate estimations can be achieved for workforce requirements under 
uncertainty. In this study, a two-stage stochastic mathematical model was created to predict the 
mounting, welding, and grinding workforce required for double bottom block production phases. 
The SAA method was used to obtain the approximate solution of this model, where the amount of 
work and average worker performance are uncertain. The problem was solved for eight different 
parameter sets and boundary values for all of the solutions are shown in Table 7. While the objective 
function values, which are calculated using the reference sample, are upper bounds, the objective 
function values obtained from the other scenarios are lower bounds. 
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RESULTS AND DISCUSSION

There are many factors that cause uncertainties in the 
shipbuilding process. With stochastic programming models, 
approximate estimations can be achieved for workforce 
requirements under uncertainty. In this study, a two-stage 
stochastic mathematical model was created to predict the 
mounting, welding, and grinding workforce required for 
double bottom block production phases. The SAA method 
was used to obtain the approximate solution of this model, 
where the amount of work and average worker performance 
are uncertain. The problem was solved for eight different 
parameter sets and boundary values for all of the solutions 
are shown in Table 7. While the objective function values, 
which are calculated using the reference sample, are upper 
bounds, the objective function values obtained from the other 
scenarios are lower bounds.

Tab. 7. Statistical values obtained by SAA.

Set no
Lower bound Upper bound
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1 150618 219605 151064 4796

2 151009 11260 150906 5212

3 151100 56030 150991 4874

4 150893 7505 150910 5169

5 150625 253556 151013 1008

6 150860 9207 150904 1022

7 151099 47511 151085 919
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In Table 7, the second and third columns represent the lower 
bounds. Accordingly, the mean objective values calculated by 
Eq. (6) are found in column two and their mean variances, 
calculated by Eq. (7), are found in column three. The fourth 
and fifth columns show the upper bounds. The mean value 
of the upper bound values calculated by Eq. (10) is indicated 
in column four and the mean variances calculated by Eq. (11) 
are presented in column five.

In Table 8, columns 2-21 show the best values of the 
decision variables obtained for each parameter set. The 22nd 
column indicates the best objective function values.

In Table 9, the second and third columns show the gap 
values calculated by Eq. (14) and their mean variances 
calculated by Eq. (15), respectively. The fourth column 
indicates the ratio of the mean gap value to the lower bound of 
the objective function. Columns 5-7 show the 90% confidence 
interval calculated by Eq. (16) for the gap values.
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Tab. 9. Optimal gap and 90% confidence interval calculations
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In Table 8, columns 2-21 show the best values of the decision variables obtained for each 

parameter set. The 22nd column indicates the best objective function values. 
In Table 9, the second and third columns show the gap values calculated by Eq. (14) and their 

mean variances calculated by Eq. (15), respectively. The fourth column indicates the ratio of the 
mean gap value to the lower bound of the objective function. Columns 5-7 show the 90% confidence 
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The best objective function values are shown in Fig. 3. 
These values were obtained from the eight different parameter 
sets solved. 
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The best objective value is obtained from the eighth parameter set (i.e. 𝑁𝑁=200, 𝑀𝑀=10 

𝑁𝑁′=10000) as 150395 currency units. Among the sets 1, 3, 5, and 7 (i.e. scenarios with 𝑁𝑁=20), the 
third parameter set gives the best objective value of 148972 currency units. For each set, 𝑀𝑀 different 
gap values were calculated. After that, the average gap for each different set was determined as an 
absolute value (Fig. 4), where the vertical axis is logarithmic. 
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It can be seen that increasing the number of scenarios from 20 to 200 for 𝑴𝑴=5 and 𝑵𝑵′=2000 

reduces the average gap from 446.094 to 103.030. It is also understood that increasing the value of 
𝑵𝑵′=2000 to 𝑵𝑵′=10000 also helped to reduce the gap. For instance, while the mean gap for set 2 is 
calculated as 103.030, this value is 43.948 for set 6. Provided that 𝑵𝑵=200, and 𝑵𝑵′=10000 remain 
constant, it is observed that increasing the number of independent samples from 5 to 10 reduced the 
average gap from 43.948 to 2.348. The upper and lower bounds, which are calculated using the 
reference sample and selected scenarios, respectively, are shown in Fig. 5. 
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The best objective value is obtained from the eighth 
parameter set (i.e. N = 200, M = 10 N ' = 10000) as 150395 
currency units. Among the sets 1, 3, 5, and 7 (i.e. scenarios 
with N = 20), the third parameter set gives the best objective 

value of 148972 currency units. For each set, M different gap 
values were calculated. After that, the average gap for each 
different set was determined as an absolute value (Fig. 4), 
where the vertical axis is logarithmic.
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It can be seen that increasing the number of scenarios from 
20 to 200 for M = 5 and N ' = 2000 reduces the average gap 
from 446.094 to 103.030. It is also understood that increasing 
the value of N ' = 2000 to N ' = 10000 also helped to reduce the 
gap. For instance, while the mean gap for set 2 is calculated as 
103.030, this value is 43.948 for set 6. Provided that N = 200, 
and N ' = 10000 remain constant, it is observed that increasing 
the number of independent samples from 5 to 10 reduced 
the average gap from 43.948 to 2.348. The upper and lower 
bounds, which are calculated using the reference sample and 
selected scenarios, respectively, are shown in Fig. 5.

It can be seen that increasing the number of scenarios from 
20 to 200 makes the lower and upper bounds more stable. 
Besides, increasing M and N does not have a significant effect 
on the stability of the lower and upper bound values.

Fig. 6 presents the 90% confidence interval and average 
gaps and shows that increasing N rather than M is more 
effective in reducing the confidence interval. Also, increasing 
N' has little effect on reducing the confidence interval.

Fig. 5. Change in lower and upper bounds
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It can be seen that increasing the number of scenarios from 20 to 200 makes the lower and upper 
bounds more stable. Besides, increasing 𝑀𝑀 and 𝑁𝑁′ does not have a significant effect on the stability 
of the lower and upper bound values.  

Fig. 6 presents the 90% confidence interval and average gaps and shows that increasing 𝑵𝑵 
rather than 𝑴𝑴 is more effective in reducing the confidence interval. Also, increasing 𝑵𝑵′ has little 
effect on reducing the confidence interval.  
 

 
 Fig. 6. Average gap values and 90% confidence interval 

 
Average gap variances are shown in Fig. 7, whose vertical axis is logarithmic. Choosing 

𝑵𝑵 =200, instead of 20, significantly reduces the mean gap variance and increasing 𝑴𝑴 and 𝑵𝑵′ are 
less effective in decreasing the variance. 
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Generally speaking, it was observed that, rather than enlarging the reference sample 𝑵𝑵′, 

increasing the number of selected scenarios 𝑵𝑵 and independent samples 𝑴𝑴 makes the objective 
function results more balanced and may improve the solution. Increasing the number of selected 
scenarios is important, in terms of decreasing the gap and variance. This means that the average gap 
is reduced as well. Therefore, the most effective parameter for decreasing the gap and variance is 𝑵𝑵. 

The comparison of the developed model results with the actual shipyard records is shown in 
Table 10. As ‘production phase E’ does not involve any grinding activities, grinding is excluded 
from this phase, leaving twenty decision variables. Here, the model data calculated for each 
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Fig. 6. Average gap values and 90% confidence interval

Average gap variances are shown in Fig. 7, whose vertical 
axis is logarithmic. Choosing N  =  200, instead of 20, 
significantly reduces the mean gap variance and increasing 
M and N ' are less effective in decreasing the variance.

It can be seen that increasing the number of scenarios from 20 to 200 makes the lower and upper 
bounds more stable. Besides, increasing 𝑀𝑀 and 𝑁𝑁′ does not have a significant effect on the stability 
of the lower and upper bound values.  

Fig. 6 presents the 90% confidence interval and average gaps and shows that increasing 𝑵𝑵 
rather than 𝑴𝑴 is more effective in reducing the confidence interval. Also, increasing 𝑵𝑵′ has little 
effect on reducing the confidence interval.  
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Generally speaking, it was observed that, rather than 
enlarging the reference sample N ', increasing the number 
of selected scenarios N and independent samples M makes 
the objective function results more balanced and may improve 
the solution. Increasing the number of selected scenarios 
is important, in terms of decreasing the gap and variance. 
This means that the average gap is reduced as well. Therefore, 
the most effective parameter for decreasing the gap and 
variance is N.

The comparison of the developed model results with the 
actual shipyard records is shown in Table 10. As ‘production 
phase E’ does not involve any grinding activities, grinding is 
excluded from this phase, leaving twenty decision variables. 
Here, the model data calculated for each production phase 
is compared with the shipyard data. The results coincide at 
the 90% level. The observed difference between the shipyard 
data and the developed model results is attributed to the 
reliance on certain assumptions and simplifications during 
the analysis.

CONCLUSIONS

In labour-intensive production, such as the shipbuilding 
industry, it is very difficult to improve the process due to low 
automation, the mental status of the employees, etc. The goal 
of this study is to estimate the workforce (man-day) required 
and its cost for mounting, welding, and grinding activities 
in the production of a double bottom block of 38820 kg 
belonging to a passenger ship. A two-stage stochastic program 
with recourse was developed. Eight different parameter sets 
were configured and the SAA method was used to solve the 
model. The results indicate a certain level of agreement with 
the shipyard records.

Data from field observations reveal that worker 
performance is variable in character. Similarly, it has been 
realised that the amount of work may change due to reasons 
such as revision, customer amendment requests, or the need 
for reworking due to faulty production. So, the amount of 
work and average worker performance are uncertain factors. 
On the other hand, since the parameters have a great effect on 
the results, it is important to use the suitable most appropriate 
parameter set. 

In order to reduce the gap and variance, increasing N 
greatly improves the results, while increasing M and N ' 
provide partial improvement. Besides this, it was also 
concluded that increasing M and N has a positive effect on 
reducing the confidence interval. When the solutions of all 
parameter sets are examined, it can be seen that the minimum 
gap is obtained from the eighth parameter set (i.e. N ' = 10000, 

Tab. 10. Comparison of the results with the shipyard

Product
Mounting (man-day) Ratio Welding (man-day) Ratio Grinding (man-day) Ratio

Model (M) Shipyard (S) (M/S) Model (M) Shipyard (S) (M/S) Model (M) Shipyard (S) (M/S)

C 7 8 0.88 6 7 0.86 7 9 0.78

D 3 5 0.60 3 4 0.75 4 5 0.80

E 2 2 1.00 1 1 1.00 - - -

F 7 6 1.17 1 1 1.00 7 8 0.88

H 5 5 1.00 4 5 0.80 6 7 0.86

G 15 17 0.88 17 19 0.89 27 28 0.96

K 18 20 0.90 23 25 0.92 36 39 0.92

Total 57 63 0.90 55 62 0.89 87 96 0.91
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N = 200, and M = 10); whereas, the minimum objective is 
obtained in the fifth set. The reason for the minimum gap 
can be interpreted as the upper and lower bounds being quite 
close to each other. In this context, LC,M, LD,M, LE,M, LF,M, LH,M, 
LG,M,and LK,M production phases in the mounting area require 
7, 3, 2, 7, 5, 15, and 18 man-day, respectively; LC,W, LD,W, LE,W, 
LF,M, LH,W, LG,W, and LK,W production phases in the welding 
area require 6, 3, 1, 1, 4, 17, and 23 man-day; and LC,G, LD,G, 
LF,G, LH,G, LG,G,and LK,G production phases in the grinding 
area require 7, 4, 7, 6, 27, and 36 man-day. As a result, the 
total labour cost for this block was estimated to be 150395 
currency units.

One of the prerequisites for utilising the established 
model is the execution of a production control system in 
the shipyard, to continually measure current performance. 
The implementation of such innovations in a  shipyard 
faces employee resistance and organisational, economic, 
and technical challenges. However, these challenges can be 
overcome by emphasising the contribution of this cultural 
change to the planning of the production process. Another 
requirement is software which is capable of determining 
the length of the joint interface for calculating the amount 
of work, thereby speeding up the process; otherwise, it may 
take a long time.

In a  future study, other shipbuilding processes, such 
as preparation activities (cutting, marking, etc.) of plates 
and profiles, outfitting, etc., may be included in the model. 
Moreover, transforming the model into a practically usable 
software-supported tool that can be employed by shipyards 
for the estimation of man-day needed for a specific activity 
(e.g. a block or a whole ship) is thought. Actual performance 
and work amount (workload) serve as data input for the 
software tool to predict the required workforce.
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